""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import json import os from typing import Any, Dict import numpy as np import torch import torch.optim as optim from data_loaders.get_data import get_dataset_loader, load_local_data from diffusion.nn import sum_flat from model.guide import GuideTransformer from model.vqvae import setup_tokenizer, TemporalVertexCodec from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.guide_parser_utils import train_args from utils.misc import fixseed class ModelTrainer: def __init__( self, args, model: GuideTransformer, tokenizer: TemporalVertexCodec ) -> None: self.add_frame_cond = args.add_frame_cond self.data_format = args.data_format self.tokenizer = tokenizer self.model = model.cuda() self.gn = args.gn self.max_seq_length = args.max_seq_length self.optimizer = optim.AdamW( model.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay, ) self.scheduler = optim.lr_scheduler.MultiStepLR( self.optimizer, milestones=args.lr_scheduler, gamma=args.gamma ) self.l2_loss = lambda a, b: (a - b) ** 2 self.start_step = 0 self.warm_up_iter = args.warm_up_iter self.lr = args.lr self.ce_loss = torch.nn.CrossEntropyLoss( ignore_index=self.tokenizer.n_clusters + 1, label_smoothing=0.1 ) if args.resume_trans is not None: self._load_from_checkpoint() def _load_from_checkpoint(self) -> None: print("loading", args.resume_trans) ckpt = torch.load(args.resume_trans, map_location="cpu") self.model.load_state_dict(ckpt["model_state_dict"], strict=True) self.optimizer.load_state_dict(ckpt["optimizer_state_dict"]) self.start_step = ckpt["iteration"] def _abbreviate( self, meshes: torch.Tensor, mask: torch.Tensor, step: int ) -> (torch.Tensor,): keyframes = meshes[..., ::step] new_mask = mask[..., ::step] return keyframes, new_mask def _prepare_tokens( self, meshes: torch.Tensor, mask: torch.Tensor ) -> (torch.Tensor,): if self.add_frame_cond == 1: keyframes, new_mask = self._abbreviate(meshes, mask, 30) elif self.add_frame_cond is None: keyframes, new_mask = self._abbreviate(meshes, mask, 1) meshes = keyframes.squeeze(2).permute((0, 2, 1)) B, T, _ = meshes.shape target_tokens = self.tokenizer.predict(meshes) target_tokens = target_tokens.reshape(B, -1) input_tokens = torch.cat( [ torch.zeros( (B, 1), dtype=target_tokens.dtype, device=target_tokens.device ) + self.model.tokens, target_tokens[:, :-1], ], axis=-1, ) return input_tokens, target_tokens, new_mask, meshes.reshape((B, T, -1)) def _run_single_train_step(self, input_tokens, audio, target_tokens): B, T = input_tokens.shape[0], input_tokens.shape[1] self.optimizer.zero_grad() logits = self.model(input_tokens, audio, cond_drop_prob=0.20) loss = self.ce_loss( logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long() ) loss.backward() if self.gn: torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) self.optimizer.step() self.scheduler.step() return logits, loss def _run_single_val_step( self, motion: torch.Tensor, cond: torch.Tensor ) -> Dict[str, Any]: self.model.eval() with torch.no_grad(): motion = torch.as_tensor(motion).cuda() ( input_tokens, target_tokens, new_mask, downsampled_gt, ) = self._prepare_tokens(motion, cond["mask"]) audio = cond["audio"].cuda() new_mask = torch.as_tensor(new_mask) B, T = target_tokens.shape[0], target_tokens.shape[1] logits = self.model(input_tokens, audio) tokens = torch.argmax(logits, dim=-1).view( B, -1, self.tokenizer.residual_depth ) pred = self.tokenizer.decode(tokens).detach().cpu() ce_loss = self.ce_loss( logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long() ) l2_loss = self._masked_l2( downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(), pred.permute(0, 2, 1).unsqueeze(2), new_mask, ) acc = self.compute_accuracy(logits, target_tokens, new_mask) return { "pred": pred, "gt": downsampled_gt, "metrics": { "ce_loss": ce_loss.item(), "l2_loss": l2_loss.item(), "perplexity": np.exp(ce_loss.item()), "acc": acc.item(), }, } def _masked_l2(self, a: torch.Tensor, b: torch.Tensor, mask: torch.Tensor) -> float: loss = self.l2_loss(a, b) loss = sum_flat(loss * mask.float()) n_entries = a.shape[1] * a.shape[2] non_zero_elements = sum_flat(mask) * n_entries mse_loss_val = loss / non_zero_elements return mse_loss_val.mean() def compute_ce_loss( self, logits: torch.Tensor, target_tokens: torch.Tensor, mask: torch.Tensor ) -> float: target_tokens[~mask.squeeze().detach().cpu()] = 0 B = logits.shape[0] logprobs = torch.log_softmax(logits, dim=-1).view( B, -1, 1, self.tokenizer.n_clusters ) logprobs = logprobs[:, self.mask_left :, :, :].contiguous() labels = target_tokens.view(B, -1, 1) labels = labels[:, self.mask_left :, :].contiguous() loss = torch.nn.functional.nll_loss( logprobs.view(-1, self.tokenizer.n_clusters), labels.view(-1).long(), reduction="none", ).reshape((B, 1, 1, -1)) mask = mask.float().to(loss.device) loss = sum_flat(loss * mask) non_zero_elements = sum_flat(mask) ce_loss_val = loss / non_zero_elements return ce_loss_val.mean() def compute_accuracy( self, logits: torch.Tensor, target: torch.Tensor, mask: torch.Tensor ) -> float: mask = mask.squeeze() probs = torch.softmax(logits, dim=-1) _, cls_pred_index = torch.max(probs, dim=-1) acc = (cls_pred_index.flatten(0) == target.flatten(0)).reshape( cls_pred_index.shape ) acc = sum_flat(acc).detach().cpu() non_zero_elements = sum_flat(mask) acc_val = acc / non_zero_elements * 100 return acc_val.mean() def update_lr_warm_up(self, nb_iter: int) -> float: current_lr = self.lr * (nb_iter + 1) / (self.warm_up_iter + 1) for param_group in self.optimizer.param_groups: param_group["lr"] = current_lr return current_lr def train_step(self, motion: torch.Tensor, cond: torch.Tensor) -> Dict[str, Any]: self.model.train() motion = torch.as_tensor(motion).cuda() input_tokens, target_tokens, new_mask, downsampled_gt = self._prepare_tokens( motion, cond["mask"] ) audio = cond["audio"].cuda() new_mask = torch.as_tensor(new_mask) logits, loss = self._run_single_train_step(input_tokens, audio, target_tokens) with torch.no_grad(): tokens = torch.argmax(logits, dim=-1).view( input_tokens.shape[0], -1, self.tokenizer.residual_depth ) pred = self.tokenizer.decode(tokens).detach().cpu() l2_loss = self._masked_l2( downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(), pred.permute(0, 2, 1).unsqueeze(2), new_mask, ) acc = self.compute_accuracy(logits, target_tokens, new_mask) return { "pred": pred, "gt": downsampled_gt, "loss": loss, "metrics": { "ce_loss": loss.item(), "l2_loss": l2_loss.item(), "perplexity": np.exp(loss.item()), "acc": acc.item(), }, } def validate( self, val_data: DataLoader, writer: SummaryWriter, step: int, save_dir: str, log_step: int = 100, max_samples: int = 30, ) -> None: val_metrics = {} pred_values = [] gt_values = [] for i, (val_motion, val_cond) in enumerate(val_data): val_out = self._run_single_val_step(val_motion, val_cond["y"]) if "metrics" in val_out.keys(): for k, v in val_out["metrics"].items(): val_metrics[k] = val_metrics.get(k, 0.0) + v if "pred" in val_out.keys() and i % log_step == 0: pred_values.append( val_data.dataset.inv_transform(val_out["pred"], self.data_format) ) gt_values.append( val_data.dataset.inv_transform(val_out["gt"], self.data_format) ) if i % log_step == 0: print( f'val_l2_loss at {step} [{i}]: {val_metrics["l2_loss"] / len(val_data):.4f}' ) pred_values = torch.concatenate((pred_values), dim=0) gt_values = torch.concatenate((gt_values), dim=0) idx = np.random.permutation(len(pred_values))[:max_samples] pred_values = pred_values[idx] gt_values = gt_values[idx] for i, (pred, gt) in enumerate(zip(pred_values, gt_values)): pred = pred.unsqueeze(0).detach().cpu().numpy() pose = gt.unsqueeze(0).detach().cpu().numpy() np.save(os.path.join(save_dir, f"b{i:04d}_pred.npy"), pred) np.save(os.path.join(save_dir, f"b{i:04d}_gt.npy"), pose) msg = "" for k, v in val_metrics.items(): writer.add_scalar(f"val_{k}", v / len(val_data), step) msg += f"val_{k} at {step}: {v / len(val_data):.4f} | " print(msg) def _save_checkpoint( args, iteration: int, model: GuideTransformer, optimizer: optim.Optimizer ) -> None: os.makedirs(f"{args.out_dir}/checkpoints/", exist_ok=True) filename = f"iter-{iteration:07d}.pt" torch.save( { "iteration": iteration, "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, f"{args.out_dir}/checkpoints/{filename}", ) def _load_data_info(args) -> (DataLoader, DataLoader): data_dict = load_local_data(args.data_root, audio_per_frame=1600) train_data = get_dataset_loader( args=args, data_dict=data_dict, split="train", add_padding=False ) val_data = get_dataset_loader(args=args, data_dict=data_dict, split="val") return train_data, val_data def main(args): fixseed(args.seed) os.makedirs(args.out_dir, exist_ok=True) writer = SummaryWriter(f"{args.out_dir}/logs/") args_path = os.path.join(args.out_dir, "args.json") with open(args_path, "w") as fw: json.dump(vars(args), fw, indent=4, sort_keys=True) tokenizer = setup_tokenizer(args.resume_pth) model = GuideTransformer( tokens=tokenizer.n_clusters, emb_len=798 if args.max_seq_length == 240 else 1998, num_layers=args.layers, dim=args.dim, ) train_data, val_data = _load_data_info(args) trainer = ModelTrainer(args, model, tokenizer) step = trainer.start_step for _ in range(1, args.total_iter + 1): train_metrics = {} count = 0 for motion, cond in tqdm(train_data): if step < args.warm_up_iter: current_lr = trainer.update_lr_warm_up(step) # rum single train step train_out = trainer.train_step(motion, cond["y"]) if "metrics" in train_out.keys(): for k, v in train_out["metrics"].items(): train_metrics[k] = train_metrics.get(k, 0.0) + v count += 1 # log all of the metrics if step % args.log_interval == 0: msg = "" for k, v in train_metrics.items(): writer.add_scalar(f"train_{k}", v / count, step) msg += f"train_{k} at {step}: {v / count:.4f} | " train_metrics = {} count = 0 writer.add_scalar(f"train_lr", trainer.scheduler.get_lr()[0], step) if step < args.warm_up_iter: msg += f"lr: {current_lr} | " print(msg) writer.flush() # run single evaluation step and save if step % args.eval_interval == 0: trainer.validate(val_data, writer, step, args.out_dir) if step % args.save_interval == 0: _save_checkpoint(args, step, trainer.model, trainer.optimizer) step += 1 if __name__ == "__main__": args = train_args() main(args)