Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import torch | |
from torch.utils.data._utils.collate import default_collate | |
def lengths_to_mask(lengths, max_len): | |
mask = torch.arange(max_len, device=lengths.device).expand( | |
len(lengths), max_len | |
) < lengths.unsqueeze(1) | |
return mask | |
def collate_tensors(batch): | |
dims = batch[0].dim() | |
max_size = [max([b.size(i) for b in batch]) for i in range(dims)] | |
size = (len(batch),) + tuple(max_size) | |
canvas = batch[0].new_zeros(size=size) | |
for i, b in enumerate(batch): | |
sub_tensor = canvas[i] | |
for d in range(dims): | |
sub_tensor = sub_tensor.narrow(d, 0, b.size(d)) | |
sub_tensor.add_(b) | |
return canvas | |
## social collate | |
def collate_v2(batch): | |
notnone_batches = [b for b in batch if b is not None] | |
databatch = [b["inp"] for b in notnone_batches] | |
missingbatch = [b["missing"] for b in notnone_batches] | |
audiobatch = [b["audio"] for b in notnone_batches] | |
lenbatch = [b["lengths"] for b in notnone_batches] | |
alenbatch = [b["audio_lengths"] for b in notnone_batches] | |
keyframebatch = [b["keyframes"] for b in notnone_batches] | |
klenbatch = [b["key_lengths"] for b in notnone_batches] | |
databatchTensor = collate_tensors(databatch) | |
missingbatchTensor = collate_tensors(missingbatch) | |
audiobatchTensor = collate_tensors(audiobatch) | |
lenbatchTensor = torch.as_tensor(lenbatch) | |
alenbatchTensor = torch.as_tensor(alenbatch) | |
keyframeTensor = collate_tensors(keyframebatch) | |
klenbatchTensor = torch.as_tensor(klenbatch) | |
maskbatchTensor = ( | |
lengths_to_mask(lenbatchTensor, databatchTensor.shape[-1]) | |
.unsqueeze(1) | |
.unsqueeze(1) | |
) # unqueeze for broadcasting | |
motion = databatchTensor | |
cond = { | |
"y": { | |
"missing": missingbatchTensor, | |
"mask": maskbatchTensor, | |
"lengths": lenbatchTensor, | |
"audio": audiobatchTensor, | |
"alengths": alenbatchTensor, | |
"keyframes": keyframeTensor, | |
"klengths": klenbatchTensor, | |
} | |
} | |
return motion, cond | |
def social_collate(batch): | |
adapted_batch = [ | |
{ | |
"inp": torch.tensor(b["motion"].T).to(torch.float32).unsqueeze(1), | |
"lengths": b["m_length"], | |
"audio": b["audio"] | |
if torch.is_tensor(b["audio"]) | |
else torch.tensor(b["audio"]).to(torch.float32), | |
"keyframes": torch.tensor(b["keyframes"]).to(torch.float32), | |
"key_lengths": b["k_length"], | |
"audio_lengths": b["a_length"], | |
"missing": torch.tensor(b["missing"]).to(torch.float32), | |
} | |
for b in batch | |
] | |
return collate_v2(adapted_batch) | |