File size: 13,565 Bytes
882f6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import json
import os
from typing import Any, Dict

import numpy as np
import torch
import torch.optim as optim

from data_loaders.get_data import get_dataset_loader, load_local_data
from diffusion.nn import sum_flat
from model.guide import GuideTransformer
from model.vqvae import setup_tokenizer, TemporalVertexCodec
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.guide_parser_utils import train_args
from utils.misc import fixseed


class ModelTrainer:
    def __init__(
        self, args, model: GuideTransformer, tokenizer: TemporalVertexCodec
    ) -> None:
        self.add_frame_cond = args.add_frame_cond
        self.data_format = args.data_format
        self.tokenizer = tokenizer
        self.model = model.cuda()
        self.gn = args.gn
        self.max_seq_length = args.max_seq_length
        self.optimizer = optim.AdamW(
            model.parameters(),
            lr=args.lr,
            betas=(0.9, 0.99),
            weight_decay=args.weight_decay,
        )
        self.scheduler = optim.lr_scheduler.MultiStepLR(
            self.optimizer, milestones=args.lr_scheduler, gamma=args.gamma
        )
        self.l2_loss = lambda a, b: (a - b) ** 2
        self.start_step = 0
        self.warm_up_iter = args.warm_up_iter
        self.lr = args.lr
        self.ce_loss = torch.nn.CrossEntropyLoss(
            ignore_index=self.tokenizer.n_clusters + 1, label_smoothing=0.1
        )

        if args.resume_trans is not None:
            self._load_from_checkpoint()

    def _load_from_checkpoint(self) -> None:
        print("loading", args.resume_trans)
        ckpt = torch.load(args.resume_trans, map_location="cpu")
        self.model.load_state_dict(ckpt["model_state_dict"], strict=True)
        self.optimizer.load_state_dict(ckpt["optimizer_state_dict"])
        self.start_step = ckpt["iteration"]

    def _abbreviate(
        self, meshes: torch.Tensor, mask: torch.Tensor, step: int
    ) -> (torch.Tensor,):
        keyframes = meshes[..., ::step]
        new_mask = mask[..., ::step]
        return keyframes, new_mask

    def _prepare_tokens(
        self, meshes: torch.Tensor, mask: torch.Tensor
    ) -> (torch.Tensor,):
        if self.add_frame_cond == 1:
            keyframes, new_mask = self._abbreviate(meshes, mask, 30)
        elif self.add_frame_cond is None:
            keyframes, new_mask = self._abbreviate(meshes, mask, 1)

        meshes = keyframes.squeeze(2).permute((0, 2, 1))
        B, T, _ = meshes.shape
        target_tokens = self.tokenizer.predict(meshes)
        target_tokens = target_tokens.reshape(B, -1)
        input_tokens = torch.cat(
            [
                torch.zeros(
                    (B, 1), dtype=target_tokens.dtype, device=target_tokens.device
                )
                + self.model.tokens,
                target_tokens[:, :-1],
            ],
            axis=-1,
        )
        return input_tokens, target_tokens, new_mask, meshes.reshape((B, T, -1))

    def _run_single_train_step(self, input_tokens, audio, target_tokens):
        B, T = input_tokens.shape[0], input_tokens.shape[1]
        self.optimizer.zero_grad()
        logits = self.model(input_tokens, audio, cond_drop_prob=0.20)
        loss = self.ce_loss(
            logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long()
        )
        loss.backward()
        if self.gn:
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
        self.optimizer.step()
        self.scheduler.step()
        return logits, loss

    def _run_single_val_step(
        self, motion: torch.Tensor, cond: torch.Tensor
    ) -> Dict[str, Any]:
        self.model.eval()
        with torch.no_grad():
            motion = torch.as_tensor(motion).cuda()
            (
                input_tokens,
                target_tokens,
                new_mask,
                downsampled_gt,
            ) = self._prepare_tokens(motion, cond["mask"])
            audio = cond["audio"].cuda()

            new_mask = torch.as_tensor(new_mask)
            B, T = target_tokens.shape[0], target_tokens.shape[1]
            logits = self.model(input_tokens, audio)
            tokens = torch.argmax(logits, dim=-1).view(
                B, -1, self.tokenizer.residual_depth
            )
            pred = self.tokenizer.decode(tokens).detach().cpu()
            ce_loss = self.ce_loss(
                logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long()
            )
            l2_loss = self._masked_l2(
                downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(),
                pred.permute(0, 2, 1).unsqueeze(2),
                new_mask,
            )
            acc = self.compute_accuracy(logits, target_tokens, new_mask)

        return {
            "pred": pred,
            "gt": downsampled_gt,
            "metrics": {
                "ce_loss": ce_loss.item(),
                "l2_loss": l2_loss.item(),
                "perplexity": np.exp(ce_loss.item()),
                "acc": acc.item(),
            },
        }

    def _masked_l2(self, a: torch.Tensor, b: torch.Tensor, mask: torch.Tensor) -> float:
        loss = self.l2_loss(a, b)
        loss = sum_flat(loss * mask.float())
        n_entries = a.shape[1] * a.shape[2]
        non_zero_elements = sum_flat(mask) * n_entries
        mse_loss_val = loss / non_zero_elements
        return mse_loss_val.mean()

    def compute_ce_loss(
        self, logits: torch.Tensor, target_tokens: torch.Tensor, mask: torch.Tensor
    ) -> float:
        target_tokens[~mask.squeeze().detach().cpu()] = 0
        B = logits.shape[0]
        logprobs = torch.log_softmax(logits, dim=-1).view(
            B, -1, 1, self.tokenizer.n_clusters
        )
        logprobs = logprobs[:, self.mask_left :, :, :].contiguous()
        labels = target_tokens.view(B, -1, 1)
        labels = labels[:, self.mask_left :, :].contiguous()
        loss = torch.nn.functional.nll_loss(
            logprobs.view(-1, self.tokenizer.n_clusters),
            labels.view(-1).long(),
            reduction="none",
        ).reshape((B, 1, 1, -1))
        mask = mask.float().to(loss.device)
        loss = sum_flat(loss * mask)
        non_zero_elements = sum_flat(mask)
        ce_loss_val = loss / non_zero_elements
        return ce_loss_val.mean()

    def compute_accuracy(
        self, logits: torch.Tensor, target: torch.Tensor, mask: torch.Tensor
    ) -> float:
        mask = mask.squeeze()
        probs = torch.softmax(logits, dim=-1)
        _, cls_pred_index = torch.max(probs, dim=-1)
        acc = (cls_pred_index.flatten(0) == target.flatten(0)).reshape(
            cls_pred_index.shape
        )
        acc = sum_flat(acc).detach().cpu()
        non_zero_elements = sum_flat(mask)
        acc_val = acc / non_zero_elements * 100
        return acc_val.mean()

    def update_lr_warm_up(self, nb_iter: int) -> float:
        current_lr = self.lr * (nb_iter + 1) / (self.warm_up_iter + 1)
        for param_group in self.optimizer.param_groups:
            param_group["lr"] = current_lr
        return current_lr

    def train_step(self, motion: torch.Tensor, cond: torch.Tensor) -> Dict[str, Any]:
        self.model.train()
        motion = torch.as_tensor(motion).cuda()
        input_tokens, target_tokens, new_mask, downsampled_gt = self._prepare_tokens(
            motion, cond["mask"]
        )
        audio = cond["audio"].cuda()
        new_mask = torch.as_tensor(new_mask)

        logits, loss = self._run_single_train_step(input_tokens, audio, target_tokens)
        with torch.no_grad():
            tokens = torch.argmax(logits, dim=-1).view(
                input_tokens.shape[0], -1, self.tokenizer.residual_depth
            )
            pred = self.tokenizer.decode(tokens).detach().cpu()
            l2_loss = self._masked_l2(
                downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(),
                pred.permute(0, 2, 1).unsqueeze(2),
                new_mask,
            )
            acc = self.compute_accuracy(logits, target_tokens, new_mask)

        return {
            "pred": pred,
            "gt": downsampled_gt,
            "loss": loss,
            "metrics": {
                "ce_loss": loss.item(),
                "l2_loss": l2_loss.item(),
                "perplexity": np.exp(loss.item()),
                "acc": acc.item(),
            },
        }

    def validate(
        self,
        val_data: DataLoader,
        writer: SummaryWriter,
        step: int,
        save_dir: str,
        log_step: int = 100,
        max_samples: int = 30,
    ) -> None:
        val_metrics = {}
        pred_values = []
        gt_values = []
        for i, (val_motion, val_cond) in enumerate(val_data):
            val_out = self._run_single_val_step(val_motion, val_cond["y"])
            if "metrics" in val_out.keys():
                for k, v in val_out["metrics"].items():
                    val_metrics[k] = val_metrics.get(k, 0.0) + v
            if "pred" in val_out.keys() and i % log_step == 0:
                pred_values.append(
                    val_data.dataset.inv_transform(val_out["pred"], self.data_format)
                )
                gt_values.append(
                    val_data.dataset.inv_transform(val_out["gt"], self.data_format)
                )
            if i % log_step == 0:
                print(
                    f'val_l2_loss at {step} [{i}]: {val_metrics["l2_loss"] / len(val_data):.4f}'
                )
        pred_values = torch.concatenate((pred_values), dim=0)
        gt_values = torch.concatenate((gt_values), dim=0)
        idx = np.random.permutation(len(pred_values))[:max_samples]
        pred_values = pred_values[idx]
        gt_values = gt_values[idx]
        for i, (pred, gt) in enumerate(zip(pred_values, gt_values)):
            pred = pred.unsqueeze(0).detach().cpu().numpy()
            pose = gt.unsqueeze(0).detach().cpu().numpy()
            np.save(os.path.join(save_dir, f"b{i:04d}_pred.npy"), pred)
            np.save(os.path.join(save_dir, f"b{i:04d}_gt.npy"), pose)

        msg = ""
        for k, v in val_metrics.items():
            writer.add_scalar(f"val_{k}", v / len(val_data), step)
            msg += f"val_{k} at {step}: {v / len(val_data):.4f} | "
        print(msg)


def _save_checkpoint(
    args, iteration: int, model: GuideTransformer, optimizer: optim.Optimizer
) -> None:
    os.makedirs(f"{args.out_dir}/checkpoints/", exist_ok=True)
    filename = f"iter-{iteration:07d}.pt"
    torch.save(
        {
            "iteration": iteration,
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
        },
        f"{args.out_dir}/checkpoints/{filename}",
    )


def _load_data_info(args) -> (DataLoader, DataLoader):
    data_dict = load_local_data(args.data_root, audio_per_frame=1600)
    train_data = get_dataset_loader(
        args=args, data_dict=data_dict, split="train", add_padding=False
    )
    val_data = get_dataset_loader(args=args, data_dict=data_dict, split="val")
    return train_data, val_data


def main(args):
    fixseed(args.seed)
    os.makedirs(args.out_dir, exist_ok=True)
    writer = SummaryWriter(f"{args.out_dir}/logs/")
    args_path = os.path.join(args.out_dir, "args.json")
    with open(args_path, "w") as fw:
        json.dump(vars(args), fw, indent=4, sort_keys=True)
    tokenizer = setup_tokenizer(args.resume_pth)

    model = GuideTransformer(
        tokens=tokenizer.n_clusters,
        emb_len=798 if args.max_seq_length == 240 else 1998,
        num_layers=args.layers,
        dim=args.dim,
    )
    train_data, val_data = _load_data_info(args)
    trainer = ModelTrainer(args, model, tokenizer)
    step = trainer.start_step

    for _ in range(1, args.total_iter + 1):
        train_metrics = {}
        count = 0
        for motion, cond in tqdm(train_data):
            if step < args.warm_up_iter:
                current_lr = trainer.update_lr_warm_up(step)

            # rum single train step
            train_out = trainer.train_step(motion, cond["y"])
            if "metrics" in train_out.keys():
                for k, v in train_out["metrics"].items():
                    train_metrics[k] = train_metrics.get(k, 0.0) + v
                count += 1

            # log all of the metrics
            if step % args.log_interval == 0:
                msg = ""
                for k, v in train_metrics.items():
                    writer.add_scalar(f"train_{k}", v / count, step)
                    msg += f"train_{k} at {step}: {v / count:.4f} | "
                    train_metrics = {}
                count = 0
                writer.add_scalar(f"train_lr", trainer.scheduler.get_lr()[0], step)
                if step < args.warm_up_iter:
                    msg += f"lr: {current_lr} | "
                print(msg)
                writer.flush()

            # run single evaluation step and save
            if step % args.eval_interval == 0:
                trainer.validate(val_data, writer, step, args.out_dir)
            if step % args.save_interval == 0:
                _save_checkpoint(args, step, trainer.model, trainer.optimizer)
            step += 1


if __name__ == "__main__":
    args = train_args()
    main(args)