Spaces:
Runtime error
Runtime error
File size: 13,565 Bytes
882f6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
import os
from typing import Any, Dict
import numpy as np
import torch
import torch.optim as optim
from data_loaders.get_data import get_dataset_loader, load_local_data
from diffusion.nn import sum_flat
from model.guide import GuideTransformer
from model.vqvae import setup_tokenizer, TemporalVertexCodec
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.guide_parser_utils import train_args
from utils.misc import fixseed
class ModelTrainer:
def __init__(
self, args, model: GuideTransformer, tokenizer: TemporalVertexCodec
) -> None:
self.add_frame_cond = args.add_frame_cond
self.data_format = args.data_format
self.tokenizer = tokenizer
self.model = model.cuda()
self.gn = args.gn
self.max_seq_length = args.max_seq_length
self.optimizer = optim.AdamW(
model.parameters(),
lr=args.lr,
betas=(0.9, 0.99),
weight_decay=args.weight_decay,
)
self.scheduler = optim.lr_scheduler.MultiStepLR(
self.optimizer, milestones=args.lr_scheduler, gamma=args.gamma
)
self.l2_loss = lambda a, b: (a - b) ** 2
self.start_step = 0
self.warm_up_iter = args.warm_up_iter
self.lr = args.lr
self.ce_loss = torch.nn.CrossEntropyLoss(
ignore_index=self.tokenizer.n_clusters + 1, label_smoothing=0.1
)
if args.resume_trans is not None:
self._load_from_checkpoint()
def _load_from_checkpoint(self) -> None:
print("loading", args.resume_trans)
ckpt = torch.load(args.resume_trans, map_location="cpu")
self.model.load_state_dict(ckpt["model_state_dict"], strict=True)
self.optimizer.load_state_dict(ckpt["optimizer_state_dict"])
self.start_step = ckpt["iteration"]
def _abbreviate(
self, meshes: torch.Tensor, mask: torch.Tensor, step: int
) -> (torch.Tensor,):
keyframes = meshes[..., ::step]
new_mask = mask[..., ::step]
return keyframes, new_mask
def _prepare_tokens(
self, meshes: torch.Tensor, mask: torch.Tensor
) -> (torch.Tensor,):
if self.add_frame_cond == 1:
keyframes, new_mask = self._abbreviate(meshes, mask, 30)
elif self.add_frame_cond is None:
keyframes, new_mask = self._abbreviate(meshes, mask, 1)
meshes = keyframes.squeeze(2).permute((0, 2, 1))
B, T, _ = meshes.shape
target_tokens = self.tokenizer.predict(meshes)
target_tokens = target_tokens.reshape(B, -1)
input_tokens = torch.cat(
[
torch.zeros(
(B, 1), dtype=target_tokens.dtype, device=target_tokens.device
)
+ self.model.tokens,
target_tokens[:, :-1],
],
axis=-1,
)
return input_tokens, target_tokens, new_mask, meshes.reshape((B, T, -1))
def _run_single_train_step(self, input_tokens, audio, target_tokens):
B, T = input_tokens.shape[0], input_tokens.shape[1]
self.optimizer.zero_grad()
logits = self.model(input_tokens, audio, cond_drop_prob=0.20)
loss = self.ce_loss(
logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long()
)
loss.backward()
if self.gn:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.scheduler.step()
return logits, loss
def _run_single_val_step(
self, motion: torch.Tensor, cond: torch.Tensor
) -> Dict[str, Any]:
self.model.eval()
with torch.no_grad():
motion = torch.as_tensor(motion).cuda()
(
input_tokens,
target_tokens,
new_mask,
downsampled_gt,
) = self._prepare_tokens(motion, cond["mask"])
audio = cond["audio"].cuda()
new_mask = torch.as_tensor(new_mask)
B, T = target_tokens.shape[0], target_tokens.shape[1]
logits = self.model(input_tokens, audio)
tokens = torch.argmax(logits, dim=-1).view(
B, -1, self.tokenizer.residual_depth
)
pred = self.tokenizer.decode(tokens).detach().cpu()
ce_loss = self.ce_loss(
logits.reshape((B * T, -1)), target_tokens.reshape((B * T)).long()
)
l2_loss = self._masked_l2(
downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(),
pred.permute(0, 2, 1).unsqueeze(2),
new_mask,
)
acc = self.compute_accuracy(logits, target_tokens, new_mask)
return {
"pred": pred,
"gt": downsampled_gt,
"metrics": {
"ce_loss": ce_loss.item(),
"l2_loss": l2_loss.item(),
"perplexity": np.exp(ce_loss.item()),
"acc": acc.item(),
},
}
def _masked_l2(self, a: torch.Tensor, b: torch.Tensor, mask: torch.Tensor) -> float:
loss = self.l2_loss(a, b)
loss = sum_flat(loss * mask.float())
n_entries = a.shape[1] * a.shape[2]
non_zero_elements = sum_flat(mask) * n_entries
mse_loss_val = loss / non_zero_elements
return mse_loss_val.mean()
def compute_ce_loss(
self, logits: torch.Tensor, target_tokens: torch.Tensor, mask: torch.Tensor
) -> float:
target_tokens[~mask.squeeze().detach().cpu()] = 0
B = logits.shape[0]
logprobs = torch.log_softmax(logits, dim=-1).view(
B, -1, 1, self.tokenizer.n_clusters
)
logprobs = logprobs[:, self.mask_left :, :, :].contiguous()
labels = target_tokens.view(B, -1, 1)
labels = labels[:, self.mask_left :, :].contiguous()
loss = torch.nn.functional.nll_loss(
logprobs.view(-1, self.tokenizer.n_clusters),
labels.view(-1).long(),
reduction="none",
).reshape((B, 1, 1, -1))
mask = mask.float().to(loss.device)
loss = sum_flat(loss * mask)
non_zero_elements = sum_flat(mask)
ce_loss_val = loss / non_zero_elements
return ce_loss_val.mean()
def compute_accuracy(
self, logits: torch.Tensor, target: torch.Tensor, mask: torch.Tensor
) -> float:
mask = mask.squeeze()
probs = torch.softmax(logits, dim=-1)
_, cls_pred_index = torch.max(probs, dim=-1)
acc = (cls_pred_index.flatten(0) == target.flatten(0)).reshape(
cls_pred_index.shape
)
acc = sum_flat(acc).detach().cpu()
non_zero_elements = sum_flat(mask)
acc_val = acc / non_zero_elements * 100
return acc_val.mean()
def update_lr_warm_up(self, nb_iter: int) -> float:
current_lr = self.lr * (nb_iter + 1) / (self.warm_up_iter + 1)
for param_group in self.optimizer.param_groups:
param_group["lr"] = current_lr
return current_lr
def train_step(self, motion: torch.Tensor, cond: torch.Tensor) -> Dict[str, Any]:
self.model.train()
motion = torch.as_tensor(motion).cuda()
input_tokens, target_tokens, new_mask, downsampled_gt = self._prepare_tokens(
motion, cond["mask"]
)
audio = cond["audio"].cuda()
new_mask = torch.as_tensor(new_mask)
logits, loss = self._run_single_train_step(input_tokens, audio, target_tokens)
with torch.no_grad():
tokens = torch.argmax(logits, dim=-1).view(
input_tokens.shape[0], -1, self.tokenizer.residual_depth
)
pred = self.tokenizer.decode(tokens).detach().cpu()
l2_loss = self._masked_l2(
downsampled_gt.permute(0, 2, 1).unsqueeze(2).detach().cpu(),
pred.permute(0, 2, 1).unsqueeze(2),
new_mask,
)
acc = self.compute_accuracy(logits, target_tokens, new_mask)
return {
"pred": pred,
"gt": downsampled_gt,
"loss": loss,
"metrics": {
"ce_loss": loss.item(),
"l2_loss": l2_loss.item(),
"perplexity": np.exp(loss.item()),
"acc": acc.item(),
},
}
def validate(
self,
val_data: DataLoader,
writer: SummaryWriter,
step: int,
save_dir: str,
log_step: int = 100,
max_samples: int = 30,
) -> None:
val_metrics = {}
pred_values = []
gt_values = []
for i, (val_motion, val_cond) in enumerate(val_data):
val_out = self._run_single_val_step(val_motion, val_cond["y"])
if "metrics" in val_out.keys():
for k, v in val_out["metrics"].items():
val_metrics[k] = val_metrics.get(k, 0.0) + v
if "pred" in val_out.keys() and i % log_step == 0:
pred_values.append(
val_data.dataset.inv_transform(val_out["pred"], self.data_format)
)
gt_values.append(
val_data.dataset.inv_transform(val_out["gt"], self.data_format)
)
if i % log_step == 0:
print(
f'val_l2_loss at {step} [{i}]: {val_metrics["l2_loss"] / len(val_data):.4f}'
)
pred_values = torch.concatenate((pred_values), dim=0)
gt_values = torch.concatenate((gt_values), dim=0)
idx = np.random.permutation(len(pred_values))[:max_samples]
pred_values = pred_values[idx]
gt_values = gt_values[idx]
for i, (pred, gt) in enumerate(zip(pred_values, gt_values)):
pred = pred.unsqueeze(0).detach().cpu().numpy()
pose = gt.unsqueeze(0).detach().cpu().numpy()
np.save(os.path.join(save_dir, f"b{i:04d}_pred.npy"), pred)
np.save(os.path.join(save_dir, f"b{i:04d}_gt.npy"), pose)
msg = ""
for k, v in val_metrics.items():
writer.add_scalar(f"val_{k}", v / len(val_data), step)
msg += f"val_{k} at {step}: {v / len(val_data):.4f} | "
print(msg)
def _save_checkpoint(
args, iteration: int, model: GuideTransformer, optimizer: optim.Optimizer
) -> None:
os.makedirs(f"{args.out_dir}/checkpoints/", exist_ok=True)
filename = f"iter-{iteration:07d}.pt"
torch.save(
{
"iteration": iteration,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
f"{args.out_dir}/checkpoints/{filename}",
)
def _load_data_info(args) -> (DataLoader, DataLoader):
data_dict = load_local_data(args.data_root, audio_per_frame=1600)
train_data = get_dataset_loader(
args=args, data_dict=data_dict, split="train", add_padding=False
)
val_data = get_dataset_loader(args=args, data_dict=data_dict, split="val")
return train_data, val_data
def main(args):
fixseed(args.seed)
os.makedirs(args.out_dir, exist_ok=True)
writer = SummaryWriter(f"{args.out_dir}/logs/")
args_path = os.path.join(args.out_dir, "args.json")
with open(args_path, "w") as fw:
json.dump(vars(args), fw, indent=4, sort_keys=True)
tokenizer = setup_tokenizer(args.resume_pth)
model = GuideTransformer(
tokens=tokenizer.n_clusters,
emb_len=798 if args.max_seq_length == 240 else 1998,
num_layers=args.layers,
dim=args.dim,
)
train_data, val_data = _load_data_info(args)
trainer = ModelTrainer(args, model, tokenizer)
step = trainer.start_step
for _ in range(1, args.total_iter + 1):
train_metrics = {}
count = 0
for motion, cond in tqdm(train_data):
if step < args.warm_up_iter:
current_lr = trainer.update_lr_warm_up(step)
# rum single train step
train_out = trainer.train_step(motion, cond["y"])
if "metrics" in train_out.keys():
for k, v in train_out["metrics"].items():
train_metrics[k] = train_metrics.get(k, 0.0) + v
count += 1
# log all of the metrics
if step % args.log_interval == 0:
msg = ""
for k, v in train_metrics.items():
writer.add_scalar(f"train_{k}", v / count, step)
msg += f"train_{k} at {step}: {v / count:.4f} | "
train_metrics = {}
count = 0
writer.add_scalar(f"train_lr", trainer.scheduler.get_lr()[0], step)
if step < args.warm_up_iter:
msg += f"lr: {current_lr} | "
print(msg)
writer.flush()
# run single evaluation step and save
if step % args.eval_interval == 0:
trainer.validate(val_data, writer, step, args.out_dir)
if step % args.save_interval == 0:
_save_checkpoint(args, step, trainer.model, trainer.optimizer)
step += 1
if __name__ == "__main__":
args = train_args()
main(args)
|