Spaces:
Runtime error
Runtime error
File size: 9,719 Bytes
882f6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
from typing import Dict, Iterable, List, Union
import numpy as np
import torch
from torch.utils import data
from utils.misc import prGreen
class Social(data.Dataset):
def __init__(
self,
args,
data_dict: Dict[str, Iterable],
split: str = "train",
chunk: bool = False,
add_padding: bool = True,
) -> None:
if args.data_format == "face":
prGreen("[dataset.py] training face only model")
data_dict["data"] = data_dict["face"]
elif args.data_format == "pose":
prGreen("[dataset.py] training pose only model")
missing = []
for d in data_dict["data"]:
missing.append(np.ones_like(d))
data_dict["missing"] = missing
# set up variables for dataloader
self.data_format = args.data_format
self.add_frame_cond = args.add_frame_cond
self._register_keyframe_step()
self.data_root = args.data_root
self.max_seq_length = args.max_seq_length
if hasattr(args, "curr_seq_length") and args.curr_seq_length is not None:
self.max_seq_length = args.curr_seq_length
prGreen([f"[dataset.py] sequences of {self.max_seq_length}"])
self.add_padding = add_padding
self.audio_per_frame = 1600
self.max_audio_length = self.max_seq_length * self.audio_per_frame
self.min_seq_length = 400
# set up training/validation splits
train_idx = list(range(0, len(data_dict["data"]) - 6))
val_idx = list(range(len(data_dict["data"]) - 6, len(data_dict["data"]) - 4))
test_idx = list(range(len(data_dict["data"]) - 4, len(data_dict["data"])))
self.split = split
if split == "train":
self._pick_sequences(data_dict, train_idx)
elif split == "val":
self._pick_sequences(data_dict, val_idx)
else:
self._pick_sequences(data_dict, test_idx)
self.chunk = chunk
if split == "test":
print("[dataset.py] chunking data...")
self._chunk_data()
self._load_std()
prGreen(
f"[dataset.py] {split} | {len(self.data)} sequences ({self.data[0].shape}) | total len {self.total_len}"
)
def inv_transform(
self, data: Union[np.ndarray, torch.Tensor], data_type: str
) -> Union[np.ndarray, torch.Tensor]:
if data_type == "pose":
std = self.std
mean = self.mean
elif data_type == "face":
std = self.face_std
mean = self.face_mean
elif data_type == "audio":
std = self.audio_std
mean = self.audio_mean
else:
assert False, f"datatype not defined: {data_type}"
if torch.is_tensor(data):
return data * torch.tensor(
std, device=data.device, requires_grad=False
) + torch.tensor(mean, device=data.device, requires_grad=False)
else:
return data * std + mean
def _pick_sequences(self, data_dict: Dict[str, Iterable], idx: List[int]) -> None:
self.data = np.take(data_dict["data"], idx, axis=0)
self.missing = np.take(data_dict["missing"], idx, axis=0)
self.audio = np.take(data_dict["audio"], idx, axis=0)
self.lengths = np.take(data_dict["lengths"], idx, axis=0)
self.total_len = sum([len(d) for d in self.data])
def _load_std(self) -> None:
stats = torch.load(os.path.join(self.data_root, "data_stats.pth"))
print(
f'[dataset.py] loading from... {os.path.join(self.data_root, "data_stats.pth")}'
)
self.mean = stats["pose_mean"].reshape(-1)
self.std = stats["pose_std"].reshape(-1)
self.face_mean = stats["code_mean"]
self.face_std = stats["code_std"]
self.audio_mean = stats["audio_mean"]
self.audio_std = stats["audio_std_flat"]
def _chunk_data(self) -> None:
chunk_data = []
chunk_missing = []
chunk_lengths = []
chunk_audio = []
# create sequences of set lengths
for d_idx in range(len(self.data)):
curr_data = self.data[d_idx]
curr_missing = self.missing[d_idx]
curr_audio = self.audio[d_idx]
end_range = len(self.data[d_idx]) - self.max_seq_length
for chunk_idx in range(0, end_range, self.max_seq_length):
chunk_end = chunk_idx + self.max_seq_length
curr_data_chunk = curr_data[chunk_idx:chunk_end, :]
curr_missing_chunk = curr_missing[chunk_idx:chunk_end, :]
curr_audio_chunk = curr_audio[
chunk_idx * self.audio_per_frame : chunk_end * self.audio_per_frame,
:,
]
if curr_data_chunk.shape[0] < self.max_seq_length:
# do not add a short chunk to the list
continue
chunk_lengths.append(curr_data_chunk.shape[0])
chunk_data.append(curr_data_chunk)
chunk_missing.append(curr_missing_chunk)
chunk_audio.append(curr_audio_chunk)
idx = np.random.permutation(len(chunk_data))
print("==> shuffle", idx)
self.data = np.take(chunk_data, idx, axis=0)
self.missing = np.take(chunk_missing, idx, axis=0)
self.lengths = np.take(chunk_lengths, idx, axis=0)
self.audio = np.take(chunk_audio, idx, axis=0)
self.total_len = len(self.data)
def _register_keyframe_step(self) -> None:
if self.add_frame_cond == 1:
self.step = 30
if self.add_frame_cond is None:
self.step = 1
def _pad_sequence(
self, sequence: np.ndarray, actual_length: int, max_length: int
) -> np.ndarray:
sequence = np.concatenate(
(
sequence,
np.zeros((max_length - actual_length, sequence.shape[-1])),
),
axis=0,
)
return sequence
def _get_idx(self, item: int) -> int:
cumulative_len = 0
seq_idx = 0
while item > cumulative_len:
cumulative_len += len(self.data[seq_idx])
seq_idx += 1
item = seq_idx - 1
return item
def _get_random_subsection(
self, data_dict: Dict[str, Iterable]
) -> Dict[str, np.ndarray]:
isnonzero = False
while not isnonzero:
start = np.random.randint(0, data_dict["m_length"] - self.max_seq_length)
if self.add_padding:
length = (
np.random.randint(self.min_seq_length, self.max_seq_length)
if not self.split == "test"
else self.max_seq_length
)
else:
length = self.max_seq_length
curr_missing = data_dict["missing"][start : start + length]
isnonzero = np.any(curr_missing)
missing = curr_missing
motion = data_dict["motion"][start : start + length, :]
keyframes = motion[:: self.step]
audio = data_dict["audio"][
start * self.audio_per_frame : (start + length) * self.audio_per_frame,
:,
]
data_dict["m_length"] = len(motion)
data_dict["k_length"] = len(keyframes)
data_dict["a_length"] = len(audio)
if data_dict["m_length"] < self.max_seq_length:
motion = self._pad_sequence(
motion, data_dict["m_length"], self.max_seq_length
)
missing = self._pad_sequence(
missing, data_dict["m_length"], self.max_seq_length
)
audio = self._pad_sequence(
audio, data_dict["a_length"], self.max_audio_length
)
max_step_length = len(np.zeros(self.max_seq_length)[:: self.step])
keyframes = self._pad_sequence(
keyframes, data_dict["k_length"], max_step_length
)
data_dict["motion"] = motion
data_dict["keyframes"] = keyframes
data_dict["audio"] = audio
data_dict["missing"] = missing
return data_dict
def __len__(self) -> int:
return self.total_len
def __getitem__(self, item: int) -> Dict[str, np.ndarray]:
# figure out which sequence to randomly sample from
if not self.split == "test":
item = self._get_idx(item)
motion = self.data[item]
audio = self.audio[item]
m_length = self.lengths[item]
missing = self.missing[item]
a_length = len(audio)
# Z Normalization
if self.data_format == "pose":
motion = (motion - self.mean) / self.std
elif self.data_format == "face":
motion = (motion - self.face_mean) / self.face_std
audio = (audio - self.audio_mean) / self.audio_std
keyframes = motion[:: self.step]
k_length = len(keyframes)
data_dict = {
"motion": motion,
"m_length": m_length,
"audio": audio,
"a_length": a_length,
"keyframes": keyframes,
"k_length": k_length,
"missing": missing,
}
if not self.split == "test" and not self.chunk:
data_dict = self._get_random_subsection(data_dict)
if self.data_format == "face":
data_dict["motion"] *= data_dict["missing"]
return data_dict
|