File size: 9,793 Bytes
12b050a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7d1177
12b050a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c5de7
12b050a
 
 
 
 
c4c5de7
 
12b050a
2c64a65
 
 
12b050a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
import io
import cv2
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import csv
import pandas as pd

from ultralytics import YOLO
import torch

from paddleocr import PaddleOCR
import postprocess

import gradio as gr


device = "cuda" if torch.cuda.is_available() else "cpu"
detection_model = YOLO('yolov8/runs/detect/yolov8s-custom-detection/weights/best.pt').to(device)
structure_model = YOLO('yolov8/runs/detect/yolov8s-custom-structure-all/weights/best.pt').to(device)
ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", det_limit_side_len=1920)  # TODO use large det_limit_side_len to get better OCR result

detection_class_names = ['table', 'table rotated']
structure_class_names = [
    'table', 'table column', 'table row', 'table column header',
    'table projected row header', 'table spanning cell', 'no object'
]
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
structure_class_thresholds = {
    "table": 0.5,
    "table column": 0.5,
    "table row": 0.5,
    "table column header": 0.5,
    "table projected row header": 0.5,
    "table spanning cell": 0.5,
    "no object": 10
}


def table_detection(image):
    imgsz = 800
    pred = detection_model.predict(image, imgsz=imgsz)
    pred = pred[0].boxes
    result = pred.cpu().numpy()
    result_list = [list(result.xywhn[i]) + [result.conf[i], result.cls[i]] for i in range(result.shape[0])]
    return result_list


def table_structure(image):
    imgsz = 1024
    pred = structure_model.predict(image, imgsz=imgsz)
    pred = pred[0].boxes
    result = pred.cpu().numpy()
    result_list = [list(result.xywhn[i]) + [result.conf[i], result.cls[i]] for i in range(result.shape[0])]
    return result_list


def crop_image(image, detection_result):
    # crop_filenames = []
    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)
    crop_image = image
    for i, result in enumerate(detection_result[:1]):  # TODO only return first detected table
        class_id = int(result[5])
        score = float(result[4])
        min_x = result[0]
        min_y = result[1]
        w = result[2]
        h = result[3]
        
        # x1 = max(0, int((min_x-w/2-0.02)*width))  # TODO expand 2%
        # y1 = max(0, int((min_y-h/2-0.02)*height))  # TODO expand 2%
        # x2 = min(width, int((min_x+w/2+0.02)*width))  # TODO expand 2%
        # y2 = min(height, int((min_y+h/2+0.02)*height))  # TODO expand 2%
        x1 = max(0, int((min_x-w/2)*width)-10)  # TODO expand 10px
        y1 = max(0, int((min_y-h/2)*height)-10)  # TODO expand 10px
        x2 = min(width, int((min_x+w/2)*width)+10)  # TODO expand 10px
        y2 = min(height, int((min_y+h/2)*height)+10)  # TODO expand 10px
        # print(x1, y1, x2, y2)
        crop_image = image[y1:y2, x1:x2, :]
        # crop_filename = filename[:-4]+'_'+str(i)+'_'+detection_class_names[class_id]+filename[-4:]
        # crop_filenames.append(crop_filename)
        # cv2.imwrite(crop_filename, crop_image)
    return crop_image


def convert_stucture(ocr_result, image, structure_result):
    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)
    
    bboxes = []
    scores = []
    labels = []
    for i, result in enumerate(structure_result):
        class_id = int(result[5])
        score = float(result[4])
        min_x = result[0]
        min_y = result[1]
        w = result[2]
        h = result[3]
        
        x1 = int((min_x-w/2)*width)
        y1 = int((min_y-h/2)*height)
        x2 = int((min_x+w/2)*width)
        y2 = int((min_y+h/2)*height)
        # print(x1, y1, x2, y2)

        bboxes.append([x1, y1, x2, y2])
        scores.append(score)
        labels.append(class_id)
    
    table_objects = []
    for bbox, score, label in zip(bboxes, scores, labels):
        table_objects.append({'bbox': bbox, 'score': score, 'label': label})
    # print('table_objects:', table_objects)
        
    table = {'objects': table_objects, 'page_num': 0}
    
    table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
    if len(table_class_objects) > 1:
        table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
    try:
        table_bbox = list(table_class_objects[0]['bbox'])
    except:
        table_bbox = (0,0,1000,1000)
    # print('table_class_objects:', table_class_objects)
    # print('table_bbox:', table_bbox)
    
    page_tokens = ocr_result
    tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.5]
    # print('tokens_in_table:', tokens_in_table)
    
    table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)
    
    return table_structures, cells, confidence_score


def visualize_cells(image, table_structures, cells):
    width = image.shape[1]
    height = image.shape[0]
    # print(width, height)
    empty_image = np.zeros((height, width, 3), np.uint8)
    empty_image.fill(255)
    empty_image = Image.fromarray(cv2.cvtColor(empty_image, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(empty_image)
    fontStyle = ImageFont.truetype("SimSong.ttc", 10, encoding="utf-8")
    
    num_cols = len(table_structures['columns'])
    num_rows = len(table_structures['rows'])
    data_rows = [['' for _ in range(num_cols)] for _ in range(num_rows)]
    for i, cell in enumerate(cells):
        bbox = cell['bbox']
        x1 = int(bbox[0])
        y1 = int(bbox[1])
        x2 = int(bbox[2])
        y2 = int(bbox[3])
        col_num = cell['column_nums'][0]
        row_num = cell['row_nums'][0]
        spans = cell['spans']
        text = ''
        for span in spans:
            if 'text' in span:
                text += span['text']     
        data_rows[row_num][col_num] = text
        
        # print('text:', text)
        text_len = len(text)
        # print('text_len:', text_len)
        cell_width = x2-x1
        # print('cell_width:', cell_width)
        num_per_line = cell_width//10
        # print('num_per_line:', num_per_line)
        if num_per_line != 0:
            line_num = text_len//num_per_line
        else:
            line_num = 0
        # print('line_num:', line_num)
        new_text = text[:num_per_line]+'\n'
        for j in range(line_num):
            new_text += text[(j+1)*num_per_line:(j+2)*num_per_line]+'\n'
        # print('new_text:', new_text)
        text = new_text
        
        cv2.rectangle(image, (x1, y1), (x2, y2), color=(0,255,0))
        # cv2.putText(image, str(row_num)+'-'+str(col_num), (x1, y1+30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
        
        # cv2.rectangle(empty_image, (x1, y1), (x2, y2), color=(0,0,255))
        # cv2.putText(empty_image, str(row_num)+'-'+str(col_num), (x1-10, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
        # cv2.putText(empty_image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0,0,255))
        draw.rectangle([(x1, y1), (x2, y2)], (255,255,255), (0,255,0))
        # draw.text((x1-20, y1), str(row_num)+'-'+str(col_num), (255,0,0), font=fontStyle)
        # draw.text((x1, y1), text, (0,0,255), font=fontStyle)

    df = pd.DataFrame(data_rows)
    df.columns = df.columns.astype(str)
    return image, df, df.to_json()


def ocr(image):
    result = ocr_model.ocr(image, cls=True)
    result = result[0]
    new_result = []
    if result is not None:
        bounding_boxes = [line[0] for line in result]
        txts = [line[1][0] for line in result]
        scores = [line[1][1] for line in result]
        # print('txts:', txts)
        # print('scores:', scores)
        # print('bounding_boxes:', bounding_boxes)
        for label, bbox in zip(txts, bounding_boxes):
            new_result.append({'bbox': [bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1]], 'text': label})
    
    return new_result


def detect_and_crop_table(image):
    detection_result = table_detection(image)
    # print('detection_result:', detection_result)
    cropped_table = crop_image(image, detection_result)

    return cropped_table


def recognize_table(image, ocr_result):
    structure_result = table_structure(image)
    print('structure_result:', structure_result)
    table_structures, cells, confidence_score = convert_stucture(ocr_result, image, structure_result)
    print('table_structures:', table_structures)
    print('cells:', cells)
    print('confidence_score:', confidence_score)
    image, df, data = visualize_cells(image, table_structures, cells)
        
    return image, df, data


def process_pdf(image):
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    
    cropped_table = detect_and_crop_table(image)
    
    ocr_result = ocr(cropped_table)
    # print('ocr_result:', ocr_result)

    image, df, data = recognize_table(cropped_table, ocr_result)
    print('df:', df)
    
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    return image, df, data
    

title = "Demo: table detection & recognition with Table Structure Recognition (Yolov8)."
description = """Demo for table extraction with the Table Structure Recognition (Yolov8)."""
examples = [['image.png'], ['mistral_paper.png']]

app = gr.Interface(fn=process_pdf, 
                     inputs=gr.Image(type="numpy"), 
                     outputs=[gr.Image(type="numpy", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
                     title=title,
                     description=description,
                     examples=examples)
app.queue()
# app.launch(debug=True, share=True)
app.launch()