from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
# suppress partial model loading warning
logging.set_verbosity_error()

import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from utils import *
import torchvision.transforms as T
import cv2
import numpy as np


def get_timesteps(scheduler, num_inference_steps, strength, device):
    # get the original timestep using init_timestep
    init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

    t_start = max(num_inference_steps - init_timestep, 0)
    timesteps = scheduler.timesteps[t_start:]

    return timesteps, num_inference_steps - t_start


class Preprocess(nn.Module):
    def __init__(self, device, opt, vae, tokenizer, text_encoder, unet,scheduler, hf_key=None):
        super().__init__()

        self.device = device
        self.sd_version = opt["sd_version"]
        self.use_depth = False
        self.config = opt

        print(f'[INFO] loading stable diffusion...')
        if hf_key is not None:
            print(f'[INFO] using hugging face custom model key: {hf_key}')
            model_key = hf_key
        elif self.sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif self.sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
            model_key = "runwayml/stable-diffusion-v1-5"
        elif self.sd_version == 'depth':
            model_key = "stabilityai/stable-diffusion-2-depth"
        else:
            raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
        
        self.model_key = model_key
        
        # Create model
        # self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
        #                                          torch_dtype=torch.float16).to(self.device)
        # self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
        # self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
        #                                                   torch_dtype=torch.float16).to(self.device)
        # self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
        #                                            torch_dtype=torch.float16).to(self.device)
        
        self.vae = vae
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.unet = unet
        self.scheduler=scheduler
        
        self.total_inverted_latents = {}
        self.noise_total = None # will contain all zs if inversion == 'ddpm', var name chosen to match the save path of zs used in pr      https://github.com/omerbt/TokenFlow/pull/24/files#
        
        self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
        print("self.frames", self.frames.shape)
        print("self.latents", self.latents.shape)
        
        
        if self.sd_version == 'ControlNet':
            from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
            control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
            ).to(self.device)
            self.unet = control_pipe.unet
            self.controlnet = control_pipe.controlnet
            self.canny_cond = self.get_canny_cond()
        elif self.sd_version == 'depth':
            self.depth_maps = self.prepare_depth_maps()
        self.scheduler = scheduler
        
        self.unet.enable_xformers_memory_efficient_attention()
        print(f'[INFO] loaded stable diffusion!')
    
    
    @torch.no_grad()   
    def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
        depth_maps = []
        midas = torch.hub.load("intel-isl/MiDaS", model_type)
        midas.to(device)
        midas.eval()

        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

        if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
            transform = midas_transforms.dpt_transform
        else:
            transform = midas_transforms.small_transform

        for i in range(len(self.paths)):
            img = cv2.imread(self.paths[i])
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

            latent_h = img.shape[0] // 8
            latent_w = img.shape[1] // 8
            
            input_batch = transform(img).to(device)
            prediction = midas(input_batch)

            depth_map = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=(latent_h, latent_w),
                mode="bicubic",
                align_corners=False,
            )
            depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
            depth_maps.append(depth_map)

        return torch.cat(depth_maps).to(self.device).to(torch.float16)
    
    @torch.no_grad()
    def get_canny_cond(self):
        canny_cond = []
        for image in self.frames.cpu().permute(0, 2, 3, 1):
            image = np.uint8(np.array(255 * image))
            low_threshold = 100
            high_threshold = 200

            image = cv2.Canny(image, low_threshold, high_threshold)
            image = image[:, :, None]
            image = np.concatenate([image, image, image], axis=2)
            image = torch.from_numpy((image.astype(np.float32) / 255.0))
            canny_cond.append(image)
        canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
        return canny_cond
    
    def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            controlnet_cond=controlnet_cond,
            conditioning_scale=1,
            return_dict=False,
        )
        
        # apply the denoising network
        noise_pred = self.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            cross_attention_kwargs={},
            down_block_additional_residuals=down_block_res_samples,
            mid_block_additional_residual=mid_block_res_sample,
            return_dict=False,
        )[0]
        return noise_pred
    
    @torch.no_grad()
    def encode_text(self, prompts, device=None):
        if device is None:
            device = self.device
        text_inputs = self.tokenizer(
            prompts,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:])
            print(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        text_embeddings = self.text_encoder(text_input_ids.to(device))[0]

        return text_embeddings

    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
        text_embeddings = self.encode_text(prompt, device=device)
        uncond_embeddings = self.encode_text(negative_prompt, device=device)

        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    @torch.no_grad()
    def decode_latents(self, latents):
        decoded = []
        batch_size = 8
        for b in range(0, latents.shape[0], batch_size):
                latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
                imgs = self.vae.decode(latents_batch).sample
                imgs = (imgs / 2 + 0.5).clamp(0, 1)
                decoded.append(imgs)
        return torch.cat(decoded)

    @torch.no_grad()
    def encode_imgs(self, imgs, batch_size=10, deterministic=True):
        imgs = 2 * imgs - 1
        latents = []
        for i in range(0, len(imgs), batch_size):
            posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
            latent = posterior.mean if deterministic else posterior.sample()
            latents.append(latent * self.vae.config.scaling_factor)
        latents = torch.cat(latents)
        return latents

    def get_data(self, frames_path, n_frames):
        
        # load frames
        if not self.config["frames"]:
            paths =  [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
            print(paths)
            if not os.path.exists(paths[0]):
                paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
            self.paths = paths
            frames = [Image.open(path).convert('RGB') for path in paths]
            if frames[0].size[0] == frames[0].size[1]:
                frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
        else:
            frames = self.config["frames"][:n_frames]
        frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
        # encode to latents
        latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
        print("frames", frames.shape)
        print("latents", latents.shape)
        
        if not self.config["frames"]:
            return paths, frames, latents
        else:
            return None, frames, latents

    @torch.no_grad()
    def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
        timesteps = reversed(self.scheduler.timesteps)
        timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
        
        return_inverted_latents = self.config["frames"] is not None
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, latent_frames.shape[0], int(batch_size)):
                x_batch = latent_frames[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                                                                    
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i - 1]]
                    if i > 0 else self.scheduler.final_alpha_cumprod
                )

                mu = alpha_prod_t ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
                pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
                latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
            
            if return_inverted_latents and t in timesteps_to_save:
                self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
    
            if save_latents and t in timesteps_to_save:
                torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        
        if save_latents:
            torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        if return_inverted_latents:
            self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()

        return latent_frames
    
    @torch.no_grad()
    def ddpm_inversion(self, cond, 
                       latent_frames, 
                       batch_size, 
                       num_inversion_steps,
                       save_path=None,
                       save_latents=True, 
                       eta: float = 1.0, 
                       skip_steps=20):
        timesteps = self.scheduler.timesteps
        return_inverted_latents = self.config["frames"] is not None

        variance_noise_shape = (
            num_inversion_steps,
            *latent_frames.shape)
        x0 = latent_frames

        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)

        for t in reversed(timesteps):
            idx = t_to_idx[int(t)]
            for b in range(0, x0.shape[0], batch_size):
                x_batch = x0[b:b + batch_size]

                noise = randn_tensor(shape=x_batch.shape, device=self.device, dtype=x0.dtype)
                xts[idx, b:b + batch_size] = self.scheduler.add_noise(x_batch, noise, t)

        xts = torch.cat([xts, x0.unsqueeze(0)], dim=0)

        zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)

        for t in tqdm(timesteps):
            idx = t_to_idx[int(t)]
            # 1. predict noise residual
            for b in range(0, x0.shape[0], batch_size):
                xt = xts[idx, b:b + batch_size]

                cond_batch = cond.repeat(xt.shape[0], 1, 1)
                noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=cond_batch).sample

                xtm1 = xts[idx + 1, b:b + batch_size]
                z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta)
                zs[idx, b:b + batch_size] = z

                # correction to avoid error accumulation
                xts[idx + 1, b:b + batch_size] = xtm1_corrected

            if save_latents:
                torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
            
            if return_inverted_latents:
                self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()

        if save_path:
            torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
            torch.save(zs, os.path.join(save_path, 'latents', f'noise_total.pt'))
        
        if return_inverted_latents:
                self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
                self.noise_total = zs.clone()

        return xts[skip_steps].expand(latent_frames.shape[0], -1, -1, -1), zs
    
    def prepare_extra_step_kwargs(self, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        return extra_step_kwargs

    @torch.no_grad()
    def ddpm_sample(self, init_latents, cond, batch_size, num_inversion_steps, skip_steps, eta, zs_all,
                    guidance_scale=0):
        use_ddpm = True
        do_classifier_free_guidance = guidance_scale > 1.0

        total_latents = init_latents
        self.scheduler.set_timesteps(num_inversion_steps, device=device)
        timesteps = self.scheduler.timesteps
        zs_total = zs_all[skip_steps:]

        if use_ddpm:
            t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])}
            timesteps = timesteps[-zs_total.shape[0]:]

        num_warmup_steps = len(timesteps) - num_inversion_steps * self.scheduler.order
        extra_step_kwargs = self.prepare_extra_step_kwargs(eta)

        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, total_latents.shape[0], batch_size):
                latents = total_latents[b:b + batch_size]
                if do_classifier_free_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                else:
                    latent_model_input = latents
                cond_batch = cond.repeat(latents.shape[0], 1, 1)

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=cond_batch,
                    return_dict=False,
                )[0]

                if do_classifier_free_guidance:
                    noise_pred_out = noise_pred.chunk(2)  # [b,4, 64, 64]
                    noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]

                    # default text guidance
                    noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)

                    noise_pred = noise_pred_uncond + noise_guidance

                idx = t_to_idx[int(t)]
                zs = zs_total[idx, b:b + batch_size]
                latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs,
                                              **extra_step_kwargs).prev_sample
                total_latents[b:b + batch_size] = latents
        return total_latents

    @torch.no_grad()
    def ddim_sample(self, x, cond, batch_size):
        timesteps = self.scheduler.timesteps
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, x.shape[0], batch_size):
                x_batch = x[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i + 1]]
                    if i < len(timesteps) - 1
                    else self.scheduler.final_alpha_cumprod
                )
                mu = alpha_prod_t ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))

                pred_x0 = (x_batch - sigma * eps) / mu
                x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
        return x
    


    @torch.no_grad()
    def extract_latents(self, 
                        num_steps,
                        save_path,
                        batch_size,
                        timesteps_to_save,
                        inversion_prompt='',
                        skip_steps=20,
                        inversion_type='ddim', 
                        eta=1.0, 
                        reconstruction=False):
        
        self.scheduler.set_timesteps(num_steps)
        cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
        latent_frames = self.latents
        
        if inversion_type == 'ddim':
            inverted_x= self.ddim_inversion(cond,
                                             latent_frames,
                                             save_path,
                                             batch_size=batch_size,
                                             save_latents=True if save_path else False,
                                             timesteps_to_save=timesteps_to_save)

            if reconstruction:
                latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)

                rgb_reconstruction = self.decode_latents(latent_reconstruction)
                return (self.frames, self.latents, self.total_inverted_latents), rgb_reconstruction

            else:
                return (self.frames, self.latents, self.total_inverted_latents), None
        
        elif inversion_type == 'ddpm':
            inverted_x, zs = self.ddpm_inversion(cond,
                                                 latent_frames,
                                                 save_path= save_path,
                                                 batch_size=batch_size,
                                                 save_latents=True if save_path else False,
                                                 num_inversion_steps=num_steps,
                                                 eta=eta,
                                                 skip_steps=skip_steps)
        
            cond = self.encode_text(inversion_prompt)
            if reconstruction:
                latent_reconstruction = self.ddpm_sample(init_latents=inverted_x,
                                                         cond=cond, batch_size=batch_size,
                                                         num_inversion_steps=num_steps, skip_steps=skip_steps,
                                                         eta=eta, zs_all=zs)
                rgb_reconstruction = self.decode_latents(latent_reconstruction)
                return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), rgb_reconstruction
            else:
                return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), None

        else:
            raise NotImplementedError()

def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    if scheduler.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * noise_pred

    # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
    mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)

    return noise, mu_xt + (eta * variance ** 0.5) * noise

def prep(opt):
    # timesteps to save
    if opt["sd_version"] == '2.1':
        model_key = "stabilityai/stable-diffusion-2-1-base"
    elif opt["sd_version"] == '2.0':
        model_key = "stabilityai/stable-diffusion-2-base"
    elif opt["sd_version"] == '1.5' or opt["sd_version"] == 'ControlNet':
        model_key = "runwayml/stable-diffusion-v1-5"
    elif opt["sd_version"] == 'depth':
        model_key = "stabilityai/stable-diffusion-2-depth"
    toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
    toy_scheduler.set_timesteps(opt["save_steps"])
    timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt["save_steps"],
                                                           strength=1.0,
                                                           device=device)

    seed_everything(opt["seed"])
    if not opt["frames"]: # original non demo setting
        save_path = os.path.join(opt["save_dir"],
                                 f'inversion_{opt[inversion]}',
                                 f'sd_{opt["sd_version"]}',
                                 Path(opt["data_path"]).stem,
                                 f'steps_{opt["steps"]}',
                                 f'nframes_{opt["n_frames"]}') 
        os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
        if opt[inversion] == 'ddpm':
            os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
        add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])    
        # save inversion prompt in a txt file
        with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
            f.write(opt["inversion_prompt"])
    else:
        save_path = None
    
    model = Preprocess(device, 
                       config,
                      vae=vae,
                      text_encoder=text_encoder,
                      scheduler=scheduler,
                      tokenizer=tokenizer,
                      unet=unet)
  
    frames_and_latents, rgb_reconstruction = model.extract_latents(
                                         num_steps=model.config["steps"],
                                         save_path=save_path,
                                         batch_size=model.config["batch_size"],
                                         timesteps_to_save=timesteps_to_save,
                                         inversion_prompt=model.config["inversion_prompt"],
                                         inversion_type=model.config[inversion],
                                         skip_steps=model.config[skip_steps],
                                         reconstruction=model.config[reconstruct]
    )

    if model.config[inversion] == 'ddpm':
        frames, latents, total_inverted_latents, zs = frames_and_latents
        return frames, latents, total_inverted_latents, zs, rgb_reconstruction
    else:
        frames, latents, total_inverted_latents = frames_and_latents
        return frames, latents, total_inverted_latents, rgb_reconstruction