Spaces:
Runtime error
Runtime error
File size: 5,234 Bytes
154ce00 10c6299 35bfce9 64abe77 4c3d6c8 fcc7404 64abe77 fcc7404 64abe77 55b99eb 64abe77 26b3a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
title: PoseReloc
emoji: 🏢
colorFrom: indigo
colorTo: gray
sdk: docker
pinned: false
license: openrail
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# News
- The [ALIKED](https://github.com/Shiaoming/ALIKED) is released.
- The [ALIKE training code](https://github.com/Shiaoming/ALIKE/raw/main/assets/ALIKE_code.zip) is released.
# ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction
ALIKE applies a differentiable keypoint detection module to detect accurate sub-pixel keypoints. The network can run at 95 frames per second for 640 x 480 images on NVIDIA Titan X (Pascal) GPU and achieve equivalent performance with the state-of-the-arts. ALIKE benefits real-time applications in resource-limited platforms/devices. Technical details are described in [this paper](https://arxiv.org/pdf/2112.02906.pdf).
> ```
> Xiaoming Zhao, Xingming Wu, Jinyu Miao, Weihai Chen, Peter C. Y. Chen, Zhengguo Li, "ALIKE: Accurate and Lightweight Keypoint
> Detection and Descriptor Extraction," IEEE Transactions on Multimedia, 2022.
> ```

If you use ALIKE in an academic work, please cite:
```
@article{Zhao2022ALIKE,
title = {ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction},
url = {http://arxiv.org/abs/2112.02906},
doi = {10.1109/TMM.2022.3155927},
journal = {IEEE Transactions on Multimedia},
author = {Zhao, Xiaoming and Wu, Xingming and Miao, Jinyu and Chen, Weihai and Chen, Peter C. Y. and Li, Zhengguo},
month = march,
year = {2022},
}
```
## 1. Prerequisites
The required packages are listed in the `requirements.txt` :
```shell
pip install -r requirements.txt
```
## 2. Models
The off-the-shelf weights of four variant ALIKE models are provided in `models/` .
## 3. Run demo
```shell
$ python demo.py -h
usage: demo.py [-h] [--model {alike-t,alike-s,alike-n,alike-l}]
[--device DEVICE] [--top_k TOP_K] [--scores_th SCORES_TH]
[--n_limit N_LIMIT] [--no_display] [--no_sub_pixel]
input
ALike Demo.
positional arguments:
input Image directory or movie file or "camera0" (for
webcam0).
optional arguments:
-h, --help show this help message and exit
--model {alike-t,alike-s,alike-n,alike-l}
The model configuration
--device DEVICE Running device (default: cuda).
--top_k TOP_K Detect top K keypoints. -1 for threshold based mode,
>0 for top K mode. (default: -1)
--scores_th SCORES_TH
Detector score threshold (default: 0.2).
--n_limit N_LIMIT Maximum number of keypoints to be detected (default:
5000).
--no_display Do not display images to screen. Useful if running
remotely (default: False).
--no_sub_pixel Do not detect sub-pixel keypoints (default: False).
```
## 4. Examples
### KITTI example
```shell
python demo.py assets/kitti
```

### TUM example
```shell
python demo.py assets/tum
```

## 5. Efficiency and performance
| Models | Parameters | GFLOPs(640x480) | MHA@3 on Hpatches | mAA(10°) on [IMW2020-test](https://www.cs.ubc.ca/research/image-matching-challenge/2021/leaderboard) (Stereo) |
|:---:|:---:|:---:|:-----------------:|:-------------------------------------------------------------------------------------------------------------:|
| D2-Net(MS) | 7653KB | 889.40 | 38.33% | 12.27% |
| LF-Net(MS) | 2642KB | 24.37 | 57.78% | 23.44% |
| SuperPoint | 1301KB | 26.11 | 70.19% | 28.97% |
| R2D2(MS) | 484KB | 464.55 | 71.48% | 39.02% |
| ASLFeat(MS) | 823KB | 77.58 | 73.52% | 33.65% |
| DISK | 1092KB | 98.97 | 70.56% | 51.22% |
| ALike-N | 318KB | 7.909 | 75.74% | 47.18% |
| ALike-L | 653KB | 19.685 | 76.85% | 49.58% |
### Evaluation on Hpatches
- Download [hpatches-sequences-release](https://hpatches.github.io/) and put it into `hseq/hpatches-sequences-release`.
- Remove the unreliable sequences as D2-Net.
- Run the following command to evaluate the performance:
```shell
python hseq/eval.py
```
For more details, please refer to the [paper](https://arxiv.org/abs/2112.02906).
|