File size: 6,732 Bytes
182d290
691ae91
 
182d290
691ae91
 
 
182d290
691ae91
 
182d290
691ae91
 
 
 
 
 
 
 
 
182d290
 
 
 
 
 
 
 
 
 
 
 
 
 
691ae91
182d290
691ae91
182d290
691ae91
 
 
 
182d290
 
 
 
 
 
 
 
 
 
691ae91
182d290
 
691ae91
 
 
 
182d290
 
 
 
691ae91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182d290
 
 
 
 
 
 
544fec9
182d290
 
 
 
 
 
691ae91
182d290
691ae91
182d290
 
 
 
691ae91
182d290
 
 
691ae91
 
182d290
 
 
 
691ae91
182d290
 
 
 
 
 
 
544fec9
182d290
 
 
 
 
 
691ae91
182d290
691ae91
 
 
 
 
182d290
 
 
691ae91
 
74cf2ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from typing import Optional, List
# from langchain.llms.utils import enforce_stop_tokens
# import torch
import requests
# import logging
# from transformers import AutoTokenizer, AutoModel, AutoConfig
# logging.basicConfig(filename='chat_log.txt', level=logging.INFO)

DEVICE = "cuda"
FORWARD_KEY = 'fk198719-Pmvv22OqZiovaxRq6YxCzkTcd6UVVX5O0'


# def torch_gc():
#     if torch.cuda.is_available():
#         with torch.cuda.device(DEVICE):
#             torch.cuda.empty_cache()
#             torch.cuda.ipc_collect()


class ChatGLM:
    max_length: int = 10000
    temperature: float = 0
    top_p = 0.9
    tokenizer: object = None
    model: object = None
    history_len: int = 10
    history = []
    URL = 'http://183.131.3.48:9200'
    HEADERS = {'Content-Type': 'application/json'}

    @property
    def _llm_type(self) -> str:
        return "ChatGLM"

    def __call__(self,
              prompt: str,
              history:  Optional[List[list[str]]] = None,
              stop: Optional[List[str]] = None) -> str:
        # print('\n\n\n\n')
        # print('-------------------------------------------------------------------------------------------------------')
        # print('                               ******   prompt    ******                                               ')
        # print(prompt)

        if history:
            history = [i for i in history if i[0] is not None]  # clear out the system message
            history = history[-self.history_len:]

        params = {'tokenizers': self.tokenizer, 'prompt': prompt, 'history': history, 'top_p': self.top_p,
                  'max_length': self.max_length, 'temperature': self.temperature}

        response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
        answer = response['response']

        # question = prompt.split('question:\n')[-1]
        # self.history = self.history+[[prompt, response]]
        # print("                                ******      GLM_answer      ******                                   ")
        # print(answer)
        # print('-------------------------------------------------------------------------------------------------------')
        # print('\n\n\n\n')

        return answer


class LocalChatGLM:
    max_length: int = 10000
    temperature: float = 0
    top_p = 0.9
    tokenizer: object = None
    model: object = None
    history_len: int = 10
    history = []

    @property
    def _llm_type(self) -> str:
        return "ChatGLM"

    def __call__(self,
              prompt: str,
              history: List[List[str]] = [],
              stop: Optional[List[str]] = None) -> str:
        # print('\n\n\n\n')
        # print('-------------------------------------------------------------------------------------------------------')
        # print('****************                            prompt                                    ****************:')
        # print(prompt)

        response, _ = self.model.chat(
            self.tokenizer,
            prompt,
            history=history[-self.history_len:] if self.history_len > 0 else [],
            max_length=self.max_length,
            temperature=self.temperature,
        )
        # torch_gc()
        # if stop is not None:
        #     response = enforce_stop_tokens(response, stop)
        question = prompt.split('question:\n')[-1]
        self.history = self.history+[[question, response]]
        # print("***********************                      answer                        **************************:")
        # print(response)
        # print('-------------------------------------------------------------------------------------------------------')
        # print('\n\n\n\n')

        return response

    # @classmethod
    # def load_model(cls,
    #                model_name_or_path: str = "THUDM/chatglm-6b"):
    #     tokenizer = AutoTokenizer.from_pretrained(
    #         model_name_or_path,
    #         trust_remote_code=True
    #     )
    #     if torch.cuda.is_available() and DEVICE.lower().startswith("cuda"):
    #         model = (
    #             AutoModel.from_pretrained(
    #                 model_name_or_path,
    #                 trust_remote_code=True)
    #             .half()
    #             .cuda()
    #         )
    #     else:
    #        model = (
    #             AutoModel.from_pretrained(
    #                 model_name_or_path,
    #                 trust_remote_code=True)
    #             .float()
    #             .to(DEVICE)
    #         )
    #     llm = cls()
    #     llm.tokenizer = tokenizer
    #     llm.model = model
    #     return llm


class OpenAI3:
    max_length: int = 10000
    temperature: float = 0.2
    top_p = 0.9
    tokenizer: object = None
    model: object = None
    history_len: int = 10
    history = []
    HEADERS = {'Content-Type': 'application/json', 'Authorization': 'Bearer fk198719-pHAOCyaUXohoZBl0KfRvYf4AuHhWm8pm'}
    URL ='https://openai.api2d.net/v1/chat/completions'
    MODEL_NAME = "gpt-3.5-turbo"


    @property
    def _llm_type(self) -> str:
        return "OPENAI3"

    def __call__(self,
              prompt: str,
              history: Optional[List[List[str]]] = None,
              stop: Optional[List[str]] = None) -> str:

        message = [{"role": "user", "content": prompt}]
        params = {"model": self.MODEL_NAME, "messages": message, 'temperature': self.temperature}
        response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
        answer = response['choices'][0]['message']['content']
        # if stop is not None:
        #     answer = enforce_stop_tokens(answer, stop)

        return answer


class OpenAI4:
    max_length: int = 10000
    temperature: float = 0.2
    top_p = 0.9
    tokenizer: object = None
    model: object = None
    history_len: int = 10
    history = []
    HEADERS = {'Content-Type': 'application/json', 'Authorization': 'Bearer fk198719-pHAOCyaUXohoZBl0KfRvYf4AuHhWm8pm'}
    URL ='https://openai.api2d.net/v1/chat/completions'
    MODEL_NAME = "gpt-4"


    @property
    def _llm_type(self) -> str:
        return "OPENAI4"

    def __call__(self,
        prompt: str,
        history: Optional[List[List[str]]] = None,
        stop: Optional[List[str]] = None) -> str:
        message = [{"role": "user", "content": prompt}]
        params = {"model": self.MODEL_NAME, "messages": message, 'temperature': self.temperature}
        response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
        answer = response['choices'][0]['message']['content']
        # if stop is not None:
        #     answer = enforce_stop_tokens(answer, stop)
        return answer