Spaces:
Runtime error
Runtime error
initial commit
Browse files- checkpoint10.pt +3 -0
- requirements.txt +2 -0
- vae_app.py +177 -0
checkpoint10.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2313ee8482dc5c4fc6e323146e88df3e1a81791f75156c2dfeb627e588fdb4f4
|
3 |
+
size 664330
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torchvision
|
vae_app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torchvision
|
5 |
+
from torchvision.transforms import ToTensor
|
6 |
+
|
7 |
+
data_test = torchvision.datasets.FashionMNIST(root=".\data", train = False, transform=ToTensor(), download=True)
|
8 |
+
|
9 |
+
class MyVAE(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
self.encoder = nn.Sequential(
|
13 |
+
# (conv_in)
|
14 |
+
nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), # 28, 28
|
15 |
+
|
16 |
+
# (down_block_0)
|
17 |
+
# (norm1)
|
18 |
+
nn.GroupNorm(8, 32, eps=1e-06, affine=True),
|
19 |
+
# (conv1)
|
20 |
+
nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), #28, 28
|
21 |
+
# (norm2):
|
22 |
+
nn.GroupNorm(8, 32, eps=1e-06, affine=True),
|
23 |
+
# (dropout):
|
24 |
+
nn.Dropout(p=0.5, inplace=False),
|
25 |
+
# (conv2):
|
26 |
+
nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), #28, 28
|
27 |
+
# (nonlinearity):
|
28 |
+
nn.SiLU(),
|
29 |
+
# (downsamplers)(conv):
|
30 |
+
nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), #14, 14
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# (down_block_1)
|
35 |
+
# (norm1)
|
36 |
+
nn.GroupNorm(8, 32, eps=1e-06, affine=True),
|
37 |
+
# (conv1)
|
38 |
+
nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), #28, 28
|
39 |
+
# (norm2):
|
40 |
+
nn.GroupNorm(8, 64, eps=1e-06, affine=True),
|
41 |
+
# (dropout):
|
42 |
+
nn.Dropout(p=0.5, inplace=False),
|
43 |
+
# (conv2):
|
44 |
+
nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), #28, 28
|
45 |
+
# (nonlinearity):
|
46 |
+
nn.SiLU(),
|
47 |
+
# (conv_shortcut):
|
48 |
+
#nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), #28, 28
|
49 |
+
# (nonlinearity):
|
50 |
+
nn.SiLU(),
|
51 |
+
# (downsamplers)(conv):
|
52 |
+
nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), #7, 7
|
53 |
+
|
54 |
+
# (conv_norm_out):
|
55 |
+
nn.GroupNorm(16, 64, eps=1e-06, affine=True),
|
56 |
+
# (conv_act):
|
57 |
+
nn.SiLU(),
|
58 |
+
# (conv_out):
|
59 |
+
nn.Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
60 |
+
|
61 |
+
#nn.Conv2d(1, 4, kernel_size=3, stride=2, padding=3//2), # 14*14
|
62 |
+
#nn.ReLU(),
|
63 |
+
#nn.Conv2d(4, 8, kernel_size=3, stride=2, padding=3//2), # 7*7
|
64 |
+
#nn.ReLU(),
|
65 |
+
)
|
66 |
+
|
67 |
+
self.decoder = nn.Sequential(
|
68 |
+
#(conv_in):
|
69 |
+
nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
70 |
+
|
71 |
+
#(norm1):
|
72 |
+
nn.GroupNorm(16, 64, eps=1e-06, affine=True),
|
73 |
+
#(conv1):
|
74 |
+
nn.Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
75 |
+
#(norm2):
|
76 |
+
nn.GroupNorm(8, 32, eps=1e-06, affine=True),
|
77 |
+
#(dropout):
|
78 |
+
nn.Dropout(p=0.5, inplace=False),
|
79 |
+
#(conv2):
|
80 |
+
nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
81 |
+
#(nonlinearity):
|
82 |
+
nn.SiLU(),
|
83 |
+
|
84 |
+
#(upsamplers):
|
85 |
+
nn.Upsample(scale_factor=2, mode='nearest'), # 14,14
|
86 |
+
|
87 |
+
#(norm1):
|
88 |
+
nn.GroupNorm(8, 32, eps=1e-06, affine=True),
|
89 |
+
#(conv1):
|
90 |
+
nn.Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
91 |
+
#(norm2):
|
92 |
+
nn.GroupNorm(8, 16, eps=1e-06, affine=True),
|
93 |
+
#(dropout):
|
94 |
+
nn.Dropout(p=0.5, inplace=False),
|
95 |
+
#(conv2):
|
96 |
+
nn.Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
97 |
+
#(nonlinearity):
|
98 |
+
nn.SiLU(),
|
99 |
+
|
100 |
+
#(upsamplers):
|
101 |
+
nn.Upsample(scale_factor=2, mode='nearest'), # 16, 28, 28
|
102 |
+
|
103 |
+
#(norm1):
|
104 |
+
nn.GroupNorm(8, 16, eps=1e-06, affine=True),
|
105 |
+
#(conv1):
|
106 |
+
nn.Conv2d(16, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
107 |
+
|
108 |
+
nn.Sigmoid()
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, xb, yb):
|
112 |
+
x = self.encoder(xb)
|
113 |
+
#print("current:",x.shape)
|
114 |
+
x = self.decoder(x)
|
115 |
+
#print("current decoder:",x.shape)
|
116 |
+
#x = x.flatten(start_dim=1).mean(dim=1, keepdim=True)
|
117 |
+
#print(x.shape, xb.shape)
|
118 |
+
return x, F.mse_loss(x, xb)
|
119 |
+
|
120 |
+
labels_map = {
|
121 |
+
0: "T-Shirt",
|
122 |
+
1: "Trouser",
|
123 |
+
2: "Pullover",
|
124 |
+
3: "Dress",
|
125 |
+
4: "Coat",
|
126 |
+
5: "Sandal",
|
127 |
+
6: "Shirt",
|
128 |
+
7: "Sneaker",
|
129 |
+
8: "Bag",
|
130 |
+
9: "Ankle Boot",
|
131 |
+
}
|
132 |
+
|
133 |
+
myVAE2 = torch.load("checkpoint10.pt").to("cpu")
|
134 |
+
myVAE2.eval()
|
135 |
+
|
136 |
+
def sample():
|
137 |
+
idx = torch.randint(0, len(data_test), (1,))
|
138 |
+
print(idx.item())
|
139 |
+
print(data_test[idx.item()][0].squeeze().shape)
|
140 |
+
img = data_test[idx.item()][0].squeeze()
|
141 |
+
img_original = torchvision.transforms.functional.to_pil_image(img)
|
142 |
+
img_encoded = torchvision.transforms.functional.to_pil_image(myVAE2.encoder(img[None,None,...]).squeeze())
|
143 |
+
img_decoded = torchvision.transforms.functional.to_pil_image(myVAE2.decoder(myVAE2.encoder(img[None,None,...])).squeeze())
|
144 |
+
|
145 |
+
return(img_original,img_encoded,img_decoded, labels_map[data_test[idx.item()][1]])
|
146 |
+
|
147 |
+
with gr.Blocks() as demo:
|
148 |
+
gr.HTML("""<h1 align="center">Variational Autoencoder</h1>""")
|
149 |
+
gr.HTML("""<h1 align="center">trained with FashionMNIST</h1>""")
|
150 |
+
session_data = gr.State([])
|
151 |
+
|
152 |
+
sampling_button = gr.Button("Sample random FashionMNIST image")
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column(scale=2):
|
156 |
+
#gr.Label("Original image")
|
157 |
+
gr.HTML("""<h3 align="left">Original image</h1>""")
|
158 |
+
sample_image = gr.Image(height=250,width=200)
|
159 |
+
with gr.Column(scale=2):
|
160 |
+
#gr.Label("Encoded image")
|
161 |
+
gr.HTML("""<h3 align="left">Encoded image</h1>""")
|
162 |
+
encoded_image = gr.Image(height=250,width=200)
|
163 |
+
with gr.Column(scale=2):
|
164 |
+
gr.HTML("""<h3 align="left">Decoded image</h1>""")
|
165 |
+
#gr.Label("Decoded image")
|
166 |
+
decoded_image = gr.Image(height=250,width=200)
|
167 |
+
|
168 |
+
image_label = gr.Label(label = "Image label")
|
169 |
+
|
170 |
+
|
171 |
+
sampling_button.click(
|
172 |
+
sample,
|
173 |
+
[],
|
174 |
+
[sample_image, encoded_image, decoded_image, image_label],
|
175 |
+
)
|
176 |
+
|
177 |
+
demo.queue().launch(share=False, inbrowser=True)
|