# Reference: # https://github.com/li-plus/chatglm.cpp # https://github.com/li-plus/chatglm.cpp/blob/main/examples/web_demo.py import chatglm_cpp import gradio as gr import argparse from pathlib import Path pipeline = chatglm_cpp.Pipeline("./chatglm3-ggml.bin") max_length = 2048 top_p = 0.4 temp = 0.95 max_context_length=512 mode = "chat" top_k = 0 repeat_penalty = 1.0 threads = 0 def postprocess(text): #if args.plain: # return f"
{text}" return text def predict(input, chatbot, max_length, top_p, temperature, messages): chatbot.append((postprocess(input), "")) messages.append(chatglm_cpp.ChatMessage(role="user", content=input)) generation_kwargs = dict( max_length=max_length, max_context_length=max_context_length, do_sample=temperature > 0, top_k=top_k, top_p=top_p, temperature=temperature, repetition_penalty=repeat_penalty, num_threads=threads, stream=True, ) response = "" if mode == "chat": chunks = [] for chunk in pipeline.chat(messages, **generation_kwargs): response += chunk.content chunks.append(chunk) chatbot[-1] = (chatbot[-1][0], postprocess(response)) yield chatbot, messages messages.append(pipeline.merge_streaming_messages(chunks)) else: for chunk in pipeline.generate(input, **generation_kwargs): response += chunk chatbot[-1] = (chatbot[-1][0], postprocess(response)) yield chatbot, messages yield chatbot, messages def reset_user_input(): return gr.update(value="") def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""