Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +809 -10
src/streamlit_app.py
CHANGED
@@ -1,15 +1,814 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
import numpy as np
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
# from blend_logic import run_dummy_prediction
|
9 |
|
10 |
+
##---- fucntions ------
|
11 |
+
import pandas as pd
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
# Load fuel data from CSV (create this file if it doesn't exist)
|
15 |
+
FUEL_CSV_PATH = "fuel_properties.csv"
|
16 |
+
|
17 |
+
def load_fuel_data():
|
18 |
+
"""Load fuel data from CSV or create default if not exists"""
|
19 |
+
try:
|
20 |
+
df = pd.read_csv(FUEL_CSV_PATH, index_col=0)
|
21 |
+
return df.to_dict('index')
|
22 |
+
except FileNotFoundError:
|
23 |
+
# Create default fuel properties if file doesn't exist
|
24 |
+
default_fuels = {
|
25 |
+
"Gasoline": {f"Property{i+1}": round(0.7 + (i*0.02), 1) for i in range(10)},
|
26 |
+
"Diesel": {f"Property{i+1}": round(0.8 + (i*0.02), 1) for i in range(10)},
|
27 |
+
"Ethanol": {f"Property{i+1}": round(0.75 + (i*0.02), 1) for i in range(10)},
|
28 |
+
"Biodiesel": {f"Property{i+1}": round(0.85 + (i*0.02), 1) for i in range(10)},
|
29 |
+
"Jet Fuel": {f"Property{i+1}": round(0.78 + (i*0.02), 1) for i in range(10)}
|
30 |
+
}
|
31 |
+
pd.DataFrame(default_fuels).T.to_csv(FUEL_CSV_PATH)
|
32 |
+
return default_fuels
|
33 |
+
|
34 |
+
# Initialize or load fuel data
|
35 |
+
if 'FUEL_PROPERTIES' not in st.session_state:
|
36 |
+
st.session_state.FUEL_PROPERTIES = load_fuel_data()
|
37 |
|
38 |
+
def save_fuel_data():
|
39 |
+
"""Save current fuel data to CSV"""
|
40 |
+
pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.to_csv(FUEL_CSV_PATH)
|
41 |
+
|
42 |
+
# FUEL_PROPERTIES = st.session_state.FUEL_PROPERTIES
|
43 |
+
|
44 |
+
# ---------------------- Page Config ----------------------
|
45 |
+
st.set_page_config(
|
46 |
+
layout="wide",
|
47 |
+
page_title="Eagle Blend Optimizer",
|
48 |
+
page_icon="π¦
",
|
49 |
+
initial_sidebar_state="expanded"
|
50 |
)
|
51 |
|
52 |
+
# ---------------------- Custom Styling ---------------------- ##e0e0e0;
|
53 |
+
|
54 |
+
st.markdown("""
|
55 |
+
<style>
|
56 |
+
|
57 |
+
.block-container {
|
58 |
+
padding-top: 1rem;
|
59 |
+
}
|
60 |
+
/* Main app background */
|
61 |
+
.stApp {
|
62 |
+
background-color: #f8f5f0;
|
63 |
+
overflow: visible;
|
64 |
+
padding-top: 0
|
65 |
+
|
66 |
+
}
|
67 |
+
/* Remove unnecessary space at the top */
|
68 |
+
/* Remove any fixed headers */
|
69 |
+
.stApp > header {
|
70 |
+
position: static !important;
|
71 |
+
}
|
72 |
+
|
73 |
+
/* Header styling */
|
74 |
+
.header {
|
75 |
+
background: linear-gradient(135deg, #654321 0%, #8B4513 100%);
|
76 |
+
color: white;
|
77 |
+
padding: 2rem 1rem;
|
78 |
+
margin-bottom: 2rem;
|
79 |
+
border-radius: 0 0 15px 15px;
|
80 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
81 |
+
}
|
82 |
+
|
83 |
+
/* Metric card styling */
|
84 |
+
.metric-card {
|
85 |
+
background: #ffffff; /* Pure white cards for contrast */
|
86 |
+
border-radius: 10px;
|
87 |
+
padding: 1.5rem;
|
88 |
+
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.15);
|
89 |
+
height: 100%;
|
90 |
+
transition: all 0.3s ease;
|
91 |
+
border: 1px solid #CFB53B;
|
92 |
+
}
|
93 |
+
|
94 |
+
.metric-card:hover {
|
95 |
+
transform: translateY(-3px);
|
96 |
+
background: #FFF8E1; /* Very light blue tint on hover */
|
97 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
|
98 |
+
border-color: #8B4513;
|
99 |
+
}
|
100 |
+
|
101 |
+
/* Metric value styling */
|
102 |
+
.metric-value {
|
103 |
+
color: #8B4513 !important; /* Deep, vibrant blue */
|
104 |
+
font-weight: 700;
|
105 |
+
font-size: 1.8rem;
|
106 |
+
text-shadow: 0 1px 2px rgba(0, 82, 204, 0.1);
|
107 |
+
}
|
108 |
+
|
109 |
+
/* Metric label styling */
|
110 |
+
.metric-label {
|
111 |
+
color: #654321; /* Navy blue-gray */
|
112 |
+
font-weight: 600;
|
113 |
+
letter-spacing: 0.5px;
|
114 |
+
}
|
115 |
+
|
116 |
+
|
117 |
+
/* Metric delta styling */
|
118 |
+
.metric-delta {
|
119 |
+
color: #A67C52; /* Medium blue-gray */
|
120 |
+
font-size: 0.9rem;
|
121 |
+
font-weight: 500;
|
122 |
+
}
|
123 |
+
|
124 |
+
/* Tab styling */
|
125 |
+
/* Main tab container */
|
126 |
+
.stTabs [data-baseweb="tab-list"] {
|
127 |
+
display: flex;
|
128 |
+
justify-content: center;
|
129 |
+
gap: 6px;
|
130 |
+
padding: 8px;
|
131 |
+
margin: 0 auto;
|
132 |
+
width: 95% !important;
|
133 |
+
}
|
134 |
+
|
135 |
+
/* Individual tabs */
|
136 |
+
.stTabs [data-baseweb="tab"] {
|
137 |
+
flex: 1; /* Equal width distribution */
|
138 |
+
min-width: 0; /* Allows flex to work */
|
139 |
+
height: 60px; /* Fixed height or use aspect ratio */
|
140 |
+
padding: 0 12px;
|
141 |
+
margin: 0;
|
142 |
+
font-weight: 600;
|
143 |
+
font-size: 1rem;
|
144 |
+
color: #654321;
|
145 |
+
background: #FFF8E1;
|
146 |
+
border: 2px solid #CFB53B;
|
147 |
+
border-radius: 12px;
|
148 |
+
transition: all 0.3s ease;
|
149 |
+
display: flex;
|
150 |
+
align-items: center;
|
151 |
+
justify-content: center;
|
152 |
+
text-align: center;
|
153 |
+
}
|
154 |
+
|
155 |
+
/* Hover state */
|
156 |
+
.stTabs [data-baseweb="tab"]:hover {
|
157 |
+
background: #FFE8A1;
|
158 |
+
transform: translateY(-2px);
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
/* Active tab */
|
163 |
+
.stTabs [aria-selected="true"] {
|
164 |
+
background: #654321;
|
165 |
+
color: #FFD700 !important;
|
166 |
+
border-color: #8B4513;
|
167 |
+
font-size: 1.05rem;
|
168 |
+
}
|
169 |
+
|
170 |
+
/* Icon sizing */
|
171 |
+
.stTabs [data-baseweb="tab"] svg {
|
172 |
+
width: 24px !important;
|
173 |
+
height: 24px !important;
|
174 |
+
margin-right: 8px !important;
|
175 |
+
}
|
176 |
+
|
177 |
+
/* Button styling */
|
178 |
+
.stButton>button {
|
179 |
+
background-color: #654321;
|
180 |
+
color: #FFD700 !important;
|
181 |
+
border-radius: 8px;
|
182 |
+
padding: 0.5rem 1rem;
|
183 |
+
transition: all 0.3s ease;
|
184 |
+
}
|
185 |
+
|
186 |
+
.stButton>button:hover {
|
187 |
+
background-color: #8B4513;
|
188 |
+
color: white;
|
189 |
+
}
|
190 |
+
|
191 |
+
/* Dataframe styling */
|
192 |
+
.table-container {
|
193 |
+
display: flex;
|
194 |
+
justify-content: center;
|
195 |
+
margin-top: 30px;
|
196 |
+
}
|
197 |
+
.table-inner {
|
198 |
+
width: 50%;
|
199 |
+
}
|
200 |
+
|
201 |
+
|
202 |
+
@media only screen and (max-width: 768px) {
|
203 |
+
.table-inner {
|
204 |
+
width: 90%; /* For mobile */
|
205 |
+
}
|
206 |
+
}
|
207 |
+
|
208 |
+
.stDataFrame {
|
209 |
+
border-radius: 10px;
|
210 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
211 |
+
background-color:white !important;
|
212 |
+
border: #CFB53B !important;
|
213 |
+
}
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
/* Section headers */
|
218 |
+
.st-emotion-cache-16txtl3 {
|
219 |
+
padding-top: 1rem;
|
220 |
+
}
|
221 |
+
|
222 |
+
/* Custom hr style */
|
223 |
+
.custom-divider {
|
224 |
+
border: 0;
|
225 |
+
height: 1px;
|
226 |
+
background: linear-gradient(90deg, transparent, #dee2e6, transparent);
|
227 |
+
margin: 2rem 0;
|
228 |
+
}
|
229 |
+
|
230 |
+
|
231 |
+
/* Consistent chart styling */
|
232 |
+
.stPlotlyChart {
|
233 |
+
border-radius: 10px;
|
234 |
+
background: white;
|
235 |
+
padding: 15px;
|
236 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
237 |
+
margin-bottom: 25px;
|
238 |
+
}
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
/* Match number inputs */
|
243 |
+
# .stNumberInput > div {
|
244 |
+
# padding: 0.25rem 0.5rem !important;
|
245 |
+
# }
|
246 |
+
|
247 |
+
#/* Better select widget alignment */
|
248 |
+
# .stSelectbox > div {
|
249 |
+
# margin-bottom: -15px;
|
250 |
+
# }
|
251 |
+
|
252 |
+
|
253 |
+
.custom-uploader > label div[data-testid="stFileUploadDropzone"] {
|
254 |
+
border: 2px solid #4CAF50;
|
255 |
+
background-color: #4CAF50;
|
256 |
+
color: white;
|
257 |
+
padding: 0.6em 1em;
|
258 |
+
border-radius: 0.5em;
|
259 |
+
text-align: center;
|
260 |
+
cursor: pointer;
|
261 |
+
}
|
262 |
+
.custom-uploader > label div[data-testid="stFileUploadDropzone"]:hover {
|
263 |
+
background-color: #45a049;
|
264 |
+
}
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
/* Color scale adjustments */
|
271 |
+
.plotly .colorbar {
|
272 |
+
padding: 10px !important;
|
273 |
+
color: #654321 !important;
|
274 |
+
}
|
275 |
+
|
276 |
+
</style>
|
277 |
+
""", unsafe_allow_html=True)
|
278 |
+
|
279 |
+
# ---------------------- App Header ----------------------
|
280 |
+
st.markdown("""
|
281 |
+
<div class="header">
|
282 |
+
<h1 style='text-align: center; margin-bottom: 0.5rem;'>π¦
Eagle Blend Optimizer</h1>
|
283 |
+
<h4 style='text-align: center; font-weight: 400; margin-top: 0;'>
|
284 |
+
AI-Powered Fuel Blend Property Prediction & Optimization
|
285 |
+
</h4>
|
286 |
+
</div>
|
287 |
+
""", unsafe_allow_html=True)
|
288 |
+
#------ universal variables
|
289 |
+
|
290 |
+
|
291 |
+
# ---------------------- Tabs ----------------------
|
292 |
+
tabs = st.tabs([
|
293 |
+
"π Dashboard",
|
294 |
+
"ποΈ Blend Designer",
|
295 |
+
"π€ Nothing For Now",
|
296 |
+
"βοΈ Optimization Engine",
|
297 |
+
"π Fuel Registry",
|
298 |
+
"π§ Model Insights"
|
299 |
+
])
|
300 |
+
|
301 |
+
# ---------------------- Dashboard Tab ----------------------
|
302 |
+
|
303 |
+
with tabs[0]:
|
304 |
+
st.subheader("Performance Metrics")
|
305 |
+
col1, col2, col3, col4 = st.columns(4)
|
306 |
+
|
307 |
+
with col1:
|
308 |
+
st.markdown("""
|
309 |
+
<div class="metric-card">
|
310 |
+
<div class="metric-label">Model Accuracy</div>
|
311 |
+
<div class="metric-value">94.7%</div>
|
312 |
+
<div class="metric-delta">RΒ² Score</div>
|
313 |
+
</div>
|
314 |
+
""", unsafe_allow_html=True)
|
315 |
+
|
316 |
+
with col2:
|
317 |
+
st.markdown("""
|
318 |
+
<div class="metric-card">
|
319 |
+
<div class="metric-label">Predictions Made</div>
|
320 |
+
<div class="metric-value">12,847</div>
|
321 |
+
<div class="metric-delta">Today</div>
|
322 |
+
</div>
|
323 |
+
""", unsafe_allow_html=True)
|
324 |
+
|
325 |
+
with col3:
|
326 |
+
st.markdown("""
|
327 |
+
<div class="metric-card">
|
328 |
+
<div class="metric-label">Optimizations</div>
|
329 |
+
<div class="metric-value">156</div>
|
330 |
+
<div class="metric-delta">This Week</div>
|
331 |
+
</div>
|
332 |
+
""", unsafe_allow_html=True)
|
333 |
+
|
334 |
+
with col4:
|
335 |
+
st.markdown("""
|
336 |
+
<div class="metric-card">
|
337 |
+
<div class="metric-label">Cost Savings</div>
|
338 |
+
<div class="metric-value">$2.4M</div>
|
339 |
+
<div class="metric-delta">Estimated Annual</div>
|
340 |
+
</div>
|
341 |
+
""", unsafe_allow_html=True)
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
st.subheader("Current Blend Properties")
|
350 |
+
blend_props = {
|
351 |
+
"Property 1": 0.847,
|
352 |
+
"Property 2": 0.623,
|
353 |
+
"Property 3": 0.734,
|
354 |
+
"Property 4": 0.912,
|
355 |
+
"Property 5": 0.456,
|
356 |
+
"Property 6": -1.234,
|
357 |
+
}
|
358 |
+
|
359 |
+
# Enhanced dataframe display
|
360 |
+
df = pd.DataFrame(blend_props.items(), columns=["Property", "Value"])
|
361 |
+
# st.dataframe(
|
362 |
+
# df.style
|
363 |
+
# .background_gradient(cmap="YlOrBr", subset=["Value"])
|
364 |
+
# .format({"Value": "{:.3f}"}),
|
365 |
+
# use_container_width=True
|
366 |
+
# )
|
367 |
+
|
368 |
+
st.markdown('<div class="table-container"><div class="table-inner">', unsafe_allow_html=True)
|
369 |
+
st.dataframe(df, use_container_width=True)
|
370 |
+
st.markdown('</div></div>', unsafe_allow_html=True)
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
with tabs[1]:
|
376 |
+
col_header = st.columns([0.8, 0.2])
|
377 |
+
with col_header[0]:
|
378 |
+
st.subheader("ποΈ Blend Designer")
|
379 |
+
with col_header[1]:
|
380 |
+
batch_blend = st.checkbox("Batch Blend Mode", value=False,
|
381 |
+
help="Switch between manual input and predefined fuel selection",
|
382 |
+
key="batch_blend_mode")
|
383 |
+
|
384 |
+
# Initialize session state
|
385 |
+
if 'show_visualization' not in st.session_state:
|
386 |
+
st.session_state.show_visualization = False
|
387 |
+
if 'blended_value' not in st.session_state:
|
388 |
+
st.session_state.blended_value = None
|
389 |
+
if 'selected_property' not in st.session_state:
|
390 |
+
st.session_state.selected_property = "Property1"
|
391 |
+
|
392 |
+
# Batch mode file upload
|
393 |
+
if batch_blend:
|
394 |
+
st.subheader("π€ Batch Processing")
|
395 |
+
uploaded_file = st.file_uploader("Upload CSV File", type=["csv"], key="Batch_upload")
|
396 |
+
weights = [0.1, 0.2, 0.25, 0.15, 0.3] # Default weights for batch mode
|
397 |
+
|
398 |
+
if not uploaded_file:
|
399 |
+
st.warning("Please upload a CSV file for batch processing")
|
400 |
+
data_input = None
|
401 |
+
else:
|
402 |
+
try:
|
403 |
+
data_input = pd.read_csv(uploaded_file)
|
404 |
+
st.success("File uploaded successfully")
|
405 |
+
st.dataframe(data_input.head())
|
406 |
+
except Exception as e:
|
407 |
+
st.error(f"Error reading file: {str(e)}")
|
408 |
+
data_input = None
|
409 |
+
else:
|
410 |
+
# Regular mode
|
411 |
+
data_input = None
|
412 |
+
weights, props = [], []
|
413 |
+
col1, col2 = st.columns(2)
|
414 |
+
|
415 |
+
with col1:
|
416 |
+
st.markdown("##### βοΈ Component Weights")
|
417 |
+
for i in range(5):
|
418 |
+
weight = st.number_input(
|
419 |
+
f"Weight for Component {i+1}",
|
420 |
+
min_value=0.0,
|
421 |
+
max_value=1.0,
|
422 |
+
value=0.2,
|
423 |
+
step=0.01,
|
424 |
+
key=f"w_{i}"
|
425 |
+
)
|
426 |
+
weights.append(weight)
|
427 |
+
|
428 |
+
with col2:
|
429 |
+
st.markdown("##### Fuel Selection")
|
430 |
+
for i in range(5):
|
431 |
+
fuel = st.selectbox(
|
432 |
+
f"Component {i+1} Fuel Type",
|
433 |
+
options=list(st.session_state.FUEL_PROPERTIES.keys()),
|
434 |
+
key=f"fuel_{i}"
|
435 |
+
)
|
436 |
+
props.append(st.session_state.FUEL_PROPERTIES[fuel])
|
437 |
+
|
438 |
+
if st.button("βοΈ Predict Blended Property", key="predict_btn"):
|
439 |
+
if batch_blend:
|
440 |
+
if data_input is None:
|
441 |
+
st.error("β οΈ Please upload a valid CSV file first!")
|
442 |
+
st.session_state.show_visualization = False
|
443 |
+
else:
|
444 |
+
st.session_state.show_visualization = True
|
445 |
+
else:
|
446 |
+
if abs(sum(weights) - 1.0) > 0.01:
|
447 |
+
st.warning("β οΈ The total of weights must be **1.0**.")
|
448 |
+
st.session_state.show_visualization = False
|
449 |
+
else:
|
450 |
+
st.session_state.show_visualization = True
|
451 |
+
|
452 |
+
if st.session_state.show_visualization:
|
453 |
+
# Show calculation details
|
454 |
+
st.subheader("Blend Components Data")
|
455 |
+
|
456 |
+
if not batch_blend:
|
457 |
+
weights_data = {f"Component{i+1}_fraction": weights[i] for i in range(len(weights))}
|
458 |
+
props_data = {f"Component{i+1}_{j}": props[i][j] for j in props[i].keys() for i in range(len(props))}
|
459 |
+
combined = {**weights_data, **props_data}
|
460 |
+
data_input = pd.DataFrame([combined])
|
461 |
+
|
462 |
+
st.write("Properties:", data_input)
|
463 |
+
|
464 |
+
# Show visualization only if prediction was made
|
465 |
+
if st.session_state.show_visualization:
|
466 |
+
if not batch_blend:
|
467 |
+
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
|
468 |
+
st.subheader("Blend Visualization")
|
469 |
+
|
470 |
+
components = [f"Component {i+1}" for i in range(5)]
|
471 |
+
|
472 |
+
# 1. Weight Distribution Pie Chart
|
473 |
+
col1, col2 = st.columns(2)
|
474 |
+
with col1:
|
475 |
+
fig1 = px.pie(
|
476 |
+
names=components,
|
477 |
+
values=weights,
|
478 |
+
title="Weight Distribution",
|
479 |
+
color_discrete_sequence=['#8B4513', '#CFB53B', '#654321'],
|
480 |
+
hole=0.4
|
481 |
+
)
|
482 |
+
fig1.update_layout(
|
483 |
+
margin=dict(t=50, b=10),
|
484 |
+
showlegend=False
|
485 |
+
)
|
486 |
+
fig1.update_traces(
|
487 |
+
textposition='inside',
|
488 |
+
textinfo='percent+label',
|
489 |
+
marker=dict(line=dict(color='#ffffff', width=1))
|
490 |
+
)
|
491 |
+
st.plotly_chart(fig1, use_container_width=True)
|
492 |
+
|
493 |
+
# 2. Property Comparison Bar Chart
|
494 |
+
with col2:
|
495 |
+
# Property selection for fuel mode
|
496 |
+
viz_property = st.selectbox(
|
497 |
+
"Select Property to View",
|
498 |
+
[f"Property{i+1}" for i in range(10)],
|
499 |
+
key="viz_property"
|
500 |
+
)
|
501 |
+
bar_values = [p[viz_property] for p in props]
|
502 |
+
blended_value = 123 #Modify
|
503 |
+
|
504 |
+
fig2 = px.bar(
|
505 |
+
x=components,
|
506 |
+
y=bar_values,
|
507 |
+
title=f"{viz_property} Values",
|
508 |
+
color=bar_values,
|
509 |
+
color_continuous_scale='YlOrBr'
|
510 |
+
)
|
511 |
+
fig2.update_layout(
|
512 |
+
yaxis_title=viz_property,
|
513 |
+
xaxis_title="Component",
|
514 |
+
margin=dict(t=50, b=10),
|
515 |
+
coloraxis_showscale=False
|
516 |
+
)
|
517 |
+
|
518 |
+
fig2.add_hline(
|
519 |
+
y=blended_value,
|
520 |
+
line_dash="dot",
|
521 |
+
line_color="#ff6600",
|
522 |
+
annotation_text="Blended Value",
|
523 |
+
annotation_position="top right"
|
524 |
+
)
|
525 |
+
st.plotly_chart(fig2, use_container_width=True)
|
526 |
+
|
527 |
+
# Display the calculated value prominently
|
528 |
+
st.markdown(f"""
|
529 |
+
<div style="
|
530 |
+
background-color: #FAF3E6;
|
531 |
+
border-left: 4px solid #8B4513;
|
532 |
+
border-radius: 4px;
|
533 |
+
padding: 12px;
|
534 |
+
margin: 12px 0;
|
535 |
+
">
|
536 |
+
<p style="margin: 0; color: #654321;
|
537 |
+
font-size: 2.2rem;
|
538 |
+
font-weight: 800;
|
539 |
+
color: #000;
|
540 |
+
text-align:center;">
|
541 |
+
Calculated <strong>{viz_property}</strong> =
|
542 |
+
<strong style="color: #000">{blended_value:.4f}</strong>
|
543 |
+
</p>
|
544 |
+
</div>
|
545 |
+
""", unsafe_allow_html=True)
|
546 |
+
else:
|
547 |
+
# Batch mode visualization placeholder
|
548 |
+
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
|
549 |
+
st.subheader("Batch Processing Results")
|
550 |
+
st.dataframe(data_input, use_container_width=True)
|
551 |
+
# st.info("Batch processing complete. Add custom visualizations here.")
|
552 |
+
|
553 |
+
|
554 |
+
with tabs[2]:
|
555 |
+
st.subheader("π€ Nothing FOr NOw")
|
556 |
+
# uploaded_file = st.file_uploader("Upload CSV File", type=["csv"])
|
557 |
+
|
558 |
+
# if uploaded_file:
|
559 |
+
# df = pd.read_csv(uploaded_file)
|
560 |
+
# st.success("File uploaded successfully")
|
561 |
+
# st.dataframe(df.head())
|
562 |
+
|
563 |
+
# if st.button("βοΈ Run Batch Prediction"):
|
564 |
+
# result_df = df.copy()
|
565 |
+
# # result_df["Predicted_Property"] = df.apply(
|
566 |
+
# # lambda row: run_dummy_prediction(row.values[:5], row.values[5:10]), axis=1
|
567 |
+
# # )
|
568 |
+
# st.success("Batch prediction completed")
|
569 |
+
# st.dataframe(result_df.head())
|
570 |
+
# csv = result_df.to_csv(index=False).encode("utf-8")
|
571 |
+
# st.download_button("Download Results", csv, "prediction_results.csv", "text/csv")
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
with tabs[3]:
|
576 |
+
st.subheader("βοΈ Optimization Engine")
|
577 |
+
|
578 |
+
# Pareto frontier demo
|
579 |
+
st.markdown("#### Cost vs Performance Trade-off")
|
580 |
+
np.random.seed(42)
|
581 |
+
optimization_data = pd.DataFrame({
|
582 |
+
'Cost ($/ton)': np.random.uniform(100, 300, 50),
|
583 |
+
'Performance Score': np.random.uniform(70, 95, 50)
|
584 |
+
})
|
585 |
+
|
586 |
+
fig3 = px.scatter(
|
587 |
+
optimization_data,
|
588 |
+
x='Cost ($/ton)',
|
589 |
+
y='Performance Score',
|
590 |
+
title="Potential Blend Formulations",
|
591 |
+
color='Performance Score',
|
592 |
+
color_continuous_scale='YlOrBr'
|
593 |
+
)
|
594 |
+
|
595 |
+
# Add dummy pareto frontier
|
596 |
+
x_pareto = np.linspace(100, 300, 10)
|
597 |
+
y_pareto = 95 - 0.1*(x_pareto-100)
|
598 |
+
fig3.add_trace(px.line(
|
599 |
+
x=x_pareto,
|
600 |
+
y=y_pareto,
|
601 |
+
color_discrete_sequence= ['#8B4513', '#CFB53B', '#654321']
|
602 |
+
).data[0])
|
603 |
+
|
604 |
+
fig3.update_layout(
|
605 |
+
showlegend=False,
|
606 |
+
annotations=[
|
607 |
+
dict(
|
608 |
+
x=200,
|
609 |
+
y=88,
|
610 |
+
text="Pareto Frontier",
|
611 |
+
showarrow=True,
|
612 |
+
arrowhead=1,
|
613 |
+
ax=-50,
|
614 |
+
ay=-30
|
615 |
+
)
|
616 |
+
]
|
617 |
+
)
|
618 |
+
st.plotly_chart(fig3, use_container_width=True)
|
619 |
+
|
620 |
+
# Blend optimization history
|
621 |
+
st.markdown("#### Optimization Progress")
|
622 |
+
iterations = np.arange(20)
|
623 |
+
performance = np.concatenate([np.linspace(70, 85, 10), np.linspace(85, 89, 10)])
|
624 |
+
|
625 |
+
fig4 = px.line(
|
626 |
+
x=iterations,
|
627 |
+
y=performance,
|
628 |
+
title="Best Performance by Iteration",
|
629 |
+
markers=True
|
630 |
+
)
|
631 |
+
fig4.update_traces(
|
632 |
+
line_color='#1d3b58',
|
633 |
+
marker_color='#2c5282',
|
634 |
+
line_width=2.5
|
635 |
+
)
|
636 |
+
fig4.update_layout(
|
637 |
+
yaxis_title="Performance Score",
|
638 |
+
xaxis_title="Iteration"
|
639 |
+
)
|
640 |
+
st.plotly_chart(fig4, use_container_width=True)
|
641 |
+
|
642 |
+
|
643 |
+
|
644 |
+
with tabs[4]:
|
645 |
+
st.subheader("π Fuel Registry") # Changed to book emoji for registry
|
646 |
+
|
647 |
+
# Button to add new fuel
|
648 |
+
st.markdown("#### β Add a New Fuel Type")
|
649 |
+
with st.expander("Click to Add New Fuel", expanded=False):
|
650 |
+
with st.form("new_fuel_form", clear_on_submit=False):
|
651 |
+
fuel_name = st.text_input("Fuel Name", placeholder="e.g. Bioethanol")
|
652 |
+
|
653 |
+
cols = st.columns(5)
|
654 |
+
properties = {}
|
655 |
+
for i in range(10):
|
656 |
+
with cols[i % 5]:
|
657 |
+
prop_val = st.number_input(
|
658 |
+
f"Property {i+1}",
|
659 |
+
min_value=0.0,
|
660 |
+
step=0.1,
|
661 |
+
key=f"prop_{i}",
|
662 |
+
format="%.2f"
|
663 |
+
)
|
664 |
+
properties[f"Property{i+1}"] = round(prop_val, 2)
|
665 |
+
|
666 |
+
col1, col2 = st.columns(2)
|
667 |
+
with col1:
|
668 |
+
submitted = st.form_submit_button("πΎ Save Fuel", use_container_width=True)
|
669 |
+
with col2:
|
670 |
+
cancelled = st.form_submit_button("β Cancel", use_container_width=True)
|
671 |
+
|
672 |
+
if submitted:
|
673 |
+
if not fuel_name.strip():
|
674 |
+
st.warning("Fuel name cannot be empty.")
|
675 |
+
elif fuel_name in st.session_state.FUEL_PROPERTIES:
|
676 |
+
st.error(f"{fuel_name} already exists in registry.")
|
677 |
+
else:
|
678 |
+
# Update both session state and CSV
|
679 |
+
st.session_state.FUEL_PROPERTIES[fuel_name] = properties
|
680 |
+
save_fuel_data()
|
681 |
+
st.success(f"{fuel_name} successfully added!")
|
682 |
+
st.rerun() # Refresh to show new fuel
|
683 |
+
|
684 |
+
if cancelled:
|
685 |
+
st.rerun()
|
686 |
+
|
687 |
+
with st.expander("Batch Add New Fuel", expanded=False):
|
688 |
+
uploaded_file = st.file_uploader(
|
689 |
+
"π€ Upload Fuel Batch (CSV)",
|
690 |
+
type=['csv'],
|
691 |
+
accept_multiple_files=False,
|
692 |
+
key="fuel_uploader",
|
693 |
+
help="Upload a CSV file with the same format as the exported registry"
|
694 |
+
)
|
695 |
+
if uploaded_file is not None:
|
696 |
+
try:
|
697 |
+
new_fuels = pd.read_csv(uploaded_file, index_col=0).to_dict('index')
|
698 |
+
|
699 |
+
# Check for duplicates
|
700 |
+
duplicates = [name for name in new_fuels if name in st.session_state.FUEL_PROPERTIES]
|
701 |
+
|
702 |
+
if duplicates:
|
703 |
+
st.warning(f"These fuels already exist and won't be updated: {', '.join(duplicates)}")
|
704 |
+
# Only add new fuels
|
705 |
+
new_fuels = {name: props for name, props in new_fuels.items()
|
706 |
+
if name not in st.session_state.FUEL_PROPERTIES}
|
707 |
+
|
708 |
+
if new_fuels:
|
709 |
+
st.session_state.FUEL_PROPERTIES.update(new_fuels)
|
710 |
+
save_fuel_data()
|
711 |
+
st.success(f"Added {len(new_fuels)} new fuel(s) to registry!")
|
712 |
+
st.rerun()
|
713 |
+
else:
|
714 |
+
st.info("No new fuels to add from the uploaded file.")
|
715 |
+
|
716 |
+
except Exception as e:
|
717 |
+
st.error(f"Error processing file: {str(e)}")
|
718 |
+
st.error("Please ensure the file matches the expected format")
|
719 |
+
|
720 |
+
# Display current fuel properties
|
721 |
+
st.markdown("#### π Current Fuel Properties")
|
722 |
+
st.dataframe(
|
723 |
+
pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.style
|
724 |
+
.background_gradient(cmap="YlOrBr", axis=None)
|
725 |
+
.format(precision=2),
|
726 |
+
use_container_width=True,
|
727 |
+
height=(len(st.session_state.FUEL_PROPERTIES) + 1) * 35 + 3,
|
728 |
+
hide_index=False
|
729 |
+
)
|
730 |
+
|
731 |
+
# File operations section
|
732 |
+
|
733 |
+
|
734 |
+
st.download_button(
|
735 |
+
label="π₯ Download Registry (CSV)",
|
736 |
+
data=pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.to_csv().encode('utf-8'),
|
737 |
+
file_name='fuel_properties.csv',
|
738 |
+
mime='text/csv',
|
739 |
+
# use_container_width=True
|
740 |
+
)
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
|
745 |
+
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
|
751 |
+
|
752 |
+
with tabs[5]:
|
753 |
+
st.subheader("π§ Model Insights")
|
754 |
+
|
755 |
+
# Feature importance
|
756 |
+
st.markdown("#### Property Importance")
|
757 |
+
features = ['Property 1', 'Property 2', 'Property 3', 'Property 4', 'Property 5']
|
758 |
+
importance = np.array([0.35, 0.25, 0.2, 0.15, 0.05])
|
759 |
+
|
760 |
+
fig5 = px.bar(
|
761 |
+
x=importance,
|
762 |
+
y=features,
|
763 |
+
orientation='h',
|
764 |
+
title="Feature Importance for Blend Prediction",
|
765 |
+
color=importance,
|
766 |
+
color_continuous_scale='YlOrBr'
|
767 |
+
)
|
768 |
+
fig5.update_layout(
|
769 |
+
xaxis_title="Importance Score",
|
770 |
+
yaxis_title="Property",
|
771 |
+
coloraxis_showscale=False
|
772 |
+
)
|
773 |
+
st.plotly_chart(fig5, use_container_width=True)
|
774 |
+
|
775 |
+
# SHAP values demo
|
776 |
+
st.markdown("#### Property Impact Direction")
|
777 |
+
fig6 = px.scatter(
|
778 |
+
x=np.random.randn(100),
|
779 |
+
y=np.random.randn(100),
|
780 |
+
color=np.random.choice(features, 100),
|
781 |
+
title="SHAP Values (Simulated)",
|
782 |
+
labels={'x': 'Impact on Prediction', 'y': 'Property Value'}
|
783 |
+
)
|
784 |
+
fig6.update_traces(
|
785 |
+
marker=dict(size=10, opacity=0.7),
|
786 |
+
selector=dict(mode='markers')
|
787 |
+
)
|
788 |
+
fig6.add_vline(x=0, line_width=1, line_dash="dash")
|
789 |
+
st.plotly_chart(fig6, use_container_width=True)
|
790 |
+
|
791 |
+
|
792 |
+
|
793 |
+
# st.markdown("""
|
794 |
+
# <style>
|
795 |
+
# /* Consistent chart styling */
|
796 |
+
# .stPlotlyChart {
|
797 |
+
# border-radius: 10px;
|
798 |
+
# background: white;
|
799 |
+
# padding: 15px;
|
800 |
+
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
801 |
+
# margin-bottom: 25px;
|
802 |
+
# }
|
803 |
+
|
804 |
+
# /* Better select widget alignment */
|
805 |
+
# .stSelectbox > div {
|
806 |
+
# margin-bottom: -15px;
|
807 |
+
# }
|
808 |
+
|
809 |
+
# /* Color scale adjustments */
|
810 |
+
# .plotly .colorbar {
|
811 |
+
# padding: 10px !important;
|
812 |
+
# }
|
813 |
+
# </style>
|
814 |
+
# """, unsafe_allow_html=True)
|