wavesoumen commited on
Commit
594130d
·
verified ·
1 Parent(s): daca8e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -21
app.py CHANGED
@@ -1,28 +1,88 @@
1
- import streamlit as st
2
- from transformers import pipeline
3
 
4
- # Initialize the image captioning pipeline
5
- captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
6
 
7
- # Streamlit app title
8
- st.title("Image to Text Captioning")
9
 
10
- # Input for image URL
11
- image_url = st.text_input("Enter the URL of the image:")
12
 
13
- # If an image URL is provided
14
- if image_url:
15
- try:
16
- # Display the image
17
- st.image(image_url, caption="Provided Image", use_column_width=True)
18
 
19
- # Generate the caption
20
- caption = captioner(image_url)
21
 
22
- # Display the caption
23
- st.write("**Generated Caption:**")
24
- st.write(caption[0]['generated_text'])
25
- except Exception as e:
26
- st.error(f"An error occurred: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- # To run this app, save this code to a file (e.g., `app.py`) and run `streamlit run app.py` in your terminal.
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import streamlit as st
2
+ # from transformers import pipeline
3
 
4
+ # # Initialize the image captioning pipeline
5
+ # captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
6
 
7
+ # # Streamlit app title
8
+ # st.title("Image to Text Captioning")
9
 
10
+ # # Input for image URL
11
+ # image_url = st.text_input("Enter the URL of the image:")
12
 
13
+ # # If an image URL is provided
14
+ # if image_url:
15
+ # try:
16
+ # # Display the image
17
+ # st.image(image_url, caption="Provided Image", use_column_width=True)
18
 
19
+ # # Generate the caption
20
+ # caption = captioner(image_url)
21
 
22
+ # # Display the caption
23
+ # st.write("**Generated Caption:**")
24
+ # st.write(caption[0]['generated_text'])
25
+ # except Exception as e:
26
+ # st.error(f"An error occurred: {e}")
27
+
28
+ # # To run this app, save this code to a file (e.g., `app.py`) and run `streamlit run app.py` in your terminal.
29
+
30
+
31
+ import streamlit as st
32
+ import torch
33
+ import requests
34
+ from PIL import Image
35
+ from transformers import BlipProcessor, BlipForConditionalGeneration
36
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
37
+ import nltk
38
+
39
+ nltk.download('punkt')
40
+
41
+ @st.cache_resource
42
+ def load_models():
43
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
44
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
45
+ tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-base-tag-generation")
46
+ model2 = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-base-tag-generation")
47
+ return processor, model, tokenizer, model2
48
+
49
+ processor, model, tokenizer, model2 = load_models()
50
+
51
+ def get_image_caption_and_tags(img_url):
52
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
53
+
54
+ # conditional image captioning
55
+ alltexts = "a photography of"
56
+ inputs = processor(raw_image, alltexts, return_tensors="pt")
57
+ out = model.generate(**inputs)
58
+ conditional_caption = processor.decode(out[0], skip_special_tokens=True)
59
+
60
+ # unconditional image captioning
61
+ inputs = processor(raw_image, return_tensors="pt")
62
+ out = model.generate(**inputs)
63
+ unconditional_caption = processor.decode(out[0], skip_special_tokens=True)
64
+
65
+ inputs = tokenizer([alltexts], max_length=512, truncation=True, return_tensors="pt")
66
+ output = model2.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64)
67
+ decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
68
+ tags = list(set(decoded_output.strip().split(", ")))
69
+
70
+ return raw_image, conditional_caption, unconditional_caption, tags
71
+
72
+ st.title('Image Captioning and Tag Generation')
73
+
74
+ img_url = st.text_input("Enter Image URL:")
75
 
76
+ if st.button("Generate Captions and Tags"):
77
+ with st.spinner('Processing...'):
78
+ try:
79
+ image, cond_caption, uncond_caption, tags = get_image_caption_and_tags(img_url)
80
+ st.image(image, caption='Input Image', use_column_width=True)
81
+ st.subheader("Conditional Caption:")
82
+ st.write(cond_caption)
83
+ st.subheader("Unconditional Caption:")
84
+ st.write(uncond_caption)
85
+ st.subheader("Generated Tags:")
86
+ st.write(", ".join(tags))
87
+ except Exception as e:
88
+ st.error(f"An error occurred: {e}")