wavesoumen commited on
Commit
3f30d85
·
verified ·
1 Parent(s): 88c3fc2
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
3
+
4
+ # Load the model and tokenizer
5
+ model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
6
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
7
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
8
+
9
+ def summarize_text(text, prefix):
10
+ src_text = prefix + text
11
+ input_ids = tokenizer(src_text, return_tensors="pt")
12
+ generated_tokens = model.generate(**input_ids)
13
+ result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
14
+ return result[0]
15
+
16
+ st.title('Text Summarization App')
17
+
18
+ input_text = st.text_area("Enter the text to summarize:", height=300)
19
+
20
+ if st.button("Generate Summaries"):
21
+ if input_text:
22
+ title1 = summarize_text(input_text, 'summary: ')
23
+ title2 = summarize_text(input_text, 'summary brief: ')
24
+ st.write("### Title 1")
25
+ st.write(title1)
26
+ st.write("### Title 2")
27
+ st.write(title2)
28
+ else:
29
+ st.warning("Please enter some text to summarize.")