RunTaskingCPU / app.py
wasmdashai's picture
Update app.py
d9452a6 verified
raw
history blame
20.8 kB
import gradio as gr
GK=0
from transformers import AutoTokenizer
import torch
import os
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss
token=os.environ.get("key_")
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device)
# import VitsModelSplit.monotonic_align as monotonic_align
from IPython.display import clear_output
from transformers import set_seed
import wandb
import logging
import copy
import torch
import numpy as np
import torch
from datasets import DatasetDict,Dataset
import os
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss
from VitsModelSplit.PosteriorDecoderModel import PosteriorDecoderModel
from VitsModelSplit.feature_extraction import VitsFeatureExtractor
from transformers import AutoTokenizer, HfArgumentParser, set_seed
from VitsModelSplit.Arguments import DataTrainingArguments, ModelArguments, VITSTrainingArguments
from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset
from torch.cuda.amp import autocast, GradScaler
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model=VitsModel.from_pretrained("facebook/mms-tts-eng").to(device)
# model1= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/OneBatch/S6/MMMMM-dash-azd60").to("cuda")
# model= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/TO/sp3/core/vend").to("cuda")
# model=VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/heppa/EndCore3/v0").to("cuda")
# model.discriminator=model1.discriminator
# model.duration_predictor=model1.duration_predictor
# model.setMfA(monotonic_align.maximum_path)
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")
feature_extractor = VitsFeatureExtractor()
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
sgl=get_state_grad_loss(mel=True,
# generator=False,
# discriminator=False,
duration=False)
training_args.num_train_epochs=1000
training_args.fp16=True
training_args.eval_steps=300
# sgl=get_state_grad_loss(k1=True,#generator=False,
# discriminator=False,
# duration=False
# )
Lst=['input_ids',
'attention_mask',
'waveform',
'labels',
'labels_attention_mask',
'mel_scaled_input_features']
def covert_cuda_batch(d):
# return d
for key in Lst:
d[key]=d[key].cuda(non_blocking=True)
# for key in d['text_encoder_output']:
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True)
# for key in d['posterior_encode_output']:
# d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True)
return d
def generator_loss(disc_outputs):
total_loss = 0
gen_losses = []
for disc_output in disc_outputs:
disc_output = disc_output
loss = torch.mean((1 - disc_output) ** 2)
gen_losses.append(loss)
total_loss += loss
return total_loss, gen_losses
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
real_losses = 0
generated_losses = 0
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
real_loss = torch.mean((1 - disc_real) ** 2)
generated_loss = torch.mean(disc_generated**2)
loss += real_loss + generated_loss
real_losses += real_loss
generated_losses += generated_loss
return loss, real_losses, generated_losses
def feature_loss(feature_maps_real, feature_maps_generated):
loss = 0
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
for real, generated in zip(feature_map_real, feature_map_generated):
real = real.detach()
loss += torch.mean(torch.abs(real - generated))
return loss * 2
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
#.............................................
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
# kl = prior_log_variance - posterior_log_variance - 0.5
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
# kl = torch.sum(kl * labels_mask)
# loss = kl / torch.sum(labels_mask)
# return loss
def get_state_grad_loss(k1=True,
mel=True,
duration=True,
generator=True,
discriminator=True):
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator}
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1. / norm_type)
return total_norm
def get_embed_speaker(self,speaker_id):
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
return self.embed_speaker(speaker_id).unsqueeze(-1)
else:
return None
def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,device):
ctrain_datasets=[]
for dataset_dir ,id_sp in train_dataset_dirs:
train_dataset = FeaturesCollectionDataset(dataset_dir = os.path.join(dataset_dir,'train'),
device = device
)
ctrain_datasets.append((train_dataset,id_sp))
eval_dataset = None
if training_args.do_eval:
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
device = device
)
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
device = device)
return ctrain_datasets,eval_dataset,full_generation_dataset
global_step=0
def trainer_to_cuda(self,
ctrain_datasets = None,
eval_dataset = None,
full_generation_dataset = None,
feature_extractor = VitsFeatureExtractor(),
training_args = None,
full_generation_sample_index= 0,
project_name = "Posterior_Decoder_Finetuning",
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
is_used_text_encoder=True,
is_used_posterior_encode=True,
dict_state_grad_loss=None,
nk=1,
path_save_model='./',
maf=None,
n_back_save_model=3000,
start_speeker=0,
end_speeker=1,
n_epoch=0,
):
# os.makedirs(training_args.output_dir,exist_ok=True)
# logger = logging.getLogger(f"{__name__} Training")
# log_level = training_args.get_process_log_level()
# logger.setLevel(log_level)
# # wandb.login(key= wandbKey)
# # wandb.init(project= project_name,config = training_args.to_dict())
if dict_state_grad_loss is None:
dict_state_grad_loss=get_state_grad_loss()
global global_step
set_seed(training_args.seed)
scaler = GradScaler(enabled=training_args.fp16)
self.config.save_pretrained(training_args.output_dir)
len_db=len(ctrain_datasets)
self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
# init optimizer, lr_scheduler
for disc in self.discriminator.discriminators:
disc.apply_weight_norm()
self.decoder.apply_weight_norm()
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
# torch.nn.utils.weight_norm(self.decoder.conv_post)
for flow in self.flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
discriminator=self.discriminator
self.discriminator=None
optimizer = torch.optim.AdamW(
self.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
# hack to be able to train on multiple device
disc_optimizer = torch.optim.AdamW(
discriminator.parameters(),
training_args.d_learning_rate,
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
eps=training_args.adam_epsilon,
)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
#.......................loop training............................
for epoch in range(training_args.num_train_epochs):
train_losses_sum = 0
loss_gen=0
loss_des=0
loss_durationsall=0
loss_melall=0
loss_klall=0
loss_fmapsall=0
lr_scheduler.step()
disc_lr_scheduler.step()
train_dataset,speaker_id=ctrain_datasets[epoch%len_db]
print(f" Num Epochs = {int((epoch+n_epoch)/len_db)}, speaker_id DB ={speaker_id}")
num_div_proc=int(len(train_dataset)/10)
print(' -process traning : [',end='')
for step, batch in enumerate(train_dataset):
# if speaker_id==None:
# if step<3 :continue
# if step>200:break
batch=covert_cuda_batch(batch)
displayloss={}
with autocast(enabled=training_args.fp16):
speaker_embeddings=get_embed_speaker(self,batch["speaker_id"] if speaker_id ==None else speaker_id )
waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask = self.forward_train(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
text_encoder_output =None ,
posterior_encode_output=None ,
return_dict=True,
monotonic_alignment_function= maf,
speaker_embeddings=speaker_embeddings
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1]
target_waveform = batch["waveform"].transpose(1, 2)
target_waveform = self.slice_segments(
target_waveform,
ids_slice * feature_extractor.hop_length,
self.config.segment_size
)
discriminator_target, fmaps_target = discriminator(target_waveform)
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
with autocast(enabled=False):
if dict_state_grad_loss['discriminator']:
loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss(
discriminator_target, discriminator_candidate
)
dk={"step_loss_disc": loss_disc.detach().item(),
"step_loss_real_disc": loss_real_disc.detach().item(),
"step_loss_fake_disc": loss_fake_disc.detach().item()}
displayloss['dict_loss_discriminator']=dk
loss_dd = loss_disc# + loss_real_disc + loss_fake_disc
# loss_dd.backward()
disc_optimizer.zero_grad()
scaler.scale(loss_dd).backward()
scaler.unscale_(disc_optimizer )
grad_norm_d = clip_grad_value_(discriminator.parameters(), None)
scaler.step(disc_optimizer)
loss_des+=grad_norm_d
with autocast(enabled=training_args.fp16):
# backpropagate
discriminator_target, fmaps_target = discriminator(target_waveform)
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach())
with autocast(enabled=False):
if dict_state_grad_loss['k1']:
loss_kl = kl_loss(
prior_latents,
posterior_log_variances,
prior_means,
prior_log_variances,
labels_padding_mask,
)
loss_kl=loss_kl*training_args.weight_kl
loss_klall+=loss_kl.detach().item()
#if displayloss['loss_kl']>=0:
# loss_kl.backward()
if dict_state_grad_loss['mel']:
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)*training_args.weight_mel
loss_melall+= loss_mel.detach().item()
# train_losses_sum = train_losses_sum + displayloss['loss_mel']
# if displayloss['loss_mel']>=0:
# loss_mel.backward()
if dict_state_grad_loss['duration']:
loss_duration=torch.sum(log_duration)*training_args.weight_duration
loss_durationsall+=loss_duration.detach().item()
# if displayloss['loss_duration']>=0:
# loss_duration.backward()
if dict_state_grad_loss['generator']:
loss_fmaps = feature_loss(fmaps_target, fmaps_candidate)
loss_gen, losses_gen = generator_loss(discriminator_candidate)
loss_gen=loss_gen * training_args.weight_gen
displayloss['loss_gen'] = loss_gen.detach().item()
# loss_gen.backward(retain_graph=True)
loss_fmaps=loss_fmaps * training_args.weight_fmaps
displayloss['loss_fmaps'] = loss_fmaps.detach().item()
# loss_fmaps.backward(retain_graph=True)
total_generator_loss = (
loss_duration
+ loss_mel
+ loss_kl
+ loss_fmaps
+ loss_gen
)
# total_generator_loss.backward()
optimizer.zero_grad()
scaler.scale(total_generator_loss).backward()
scaler.unscale_(optimizer)
grad_norm_g = clip_grad_value_(self.parameters(), None)
scaler.step(optimizer)
scaler.update()
loss_gen+=grad_norm_g
# optimizer.step()
# print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ")
# print(f"display loss function enable :{displayloss}")
global_step +=1
if step%num_div_proc==0:
print('==',end='')
# validation
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
if do_eval:
speaker_id_c=int(torch.randint(start_speeker,end_speeker,size=(1,))[0])
logger.info("Running validation... ")
eval_losses_sum = 0
cc=0;
for step, batch in enumerate(eval_dataset):
break
if cc>2: break
cc+=1
with torch.no_grad():
model_outputs = self.forward(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"],
return_dict=True,
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1]
loss = loss_mel.detach().item()
eval_losses_sum +=loss
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation =self.forward(
input_ids =full_generation_sample["input_ids"],
attention_mask=full_generation_sample["attention_mask"],
speaker_id=speaker_id_c
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({
"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000)
for w in full_generation_waveform],})
step+=1
# wandb.log({"train_losses":loss_melall})
wandb.log({"loss_gen":loss_gen/step})
wandb.log({"loss_des":loss_des/step})
wandb.log({"loss_duration":loss_durationsall/step})
wandb.log({"loss_mel":loss_melall/step})
wandb.log({f"loss_kl_db{speaker_id}":loss_klall/step})
print(']',end='')
# self.save_pretrained(path_save_model)
self.discriminator=discriminator
for disc in self.discriminator.discriminators:
disc.remove_weight_norm()
self.decoder.remove_weight_norm()
# torch.nn.utils.remove_weight_norm(self.decoder.conv_pre)
# torch.nn.utils.remove_weight_norm(self.decoder.conv_post)
for flow in self.flow.flows:
torch.nn.utils.remove_weight_norm(flow.conv_pre)
torch.nn.utils.remove_weight_norm(flow.conv_post)
self.save_pretrained(path_save_model)
logger.info("Running final full generations samples... ")
logger.info("***** Training / Inference Done *****")
def modelspeech(texts):
inputs = tokenizer(texts, return_tensors="pt")#.cuda()
wav = model_vits(input_ids=inputs["input_ids"]).waveform#.detach()
# display(Audio(wav, rate=model.config.sampling_rate))
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav)
def greet(text,id):
global GK
b=int(id)
while True:
GK+=1
texts=[text]*b
out=modelspeech(texts)
yield f"namber is {GK}"
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text")
demo.launch()