Spaces:
Sleeping
Sleeping
import gradio as gr | |
GK=0 | |
from transformers import AutoTokenizer | |
import torch | |
import os | |
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss | |
token=os.environ.get("key_") | |
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token) | |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)#.to(device) | |
# import VitsModelSplit.monotonic_align as monotonic_align | |
from IPython.display import clear_output | |
from transformers import set_seed | |
import wandb | |
import logging | |
import copy | |
import torch | |
import numpy as np | |
import torch | |
from datasets import DatasetDict,Dataset | |
import os | |
from VitsModelSplit.vits_model2 import VitsModel,get_state_grad_loss | |
from VitsModelSplit.PosteriorDecoderModel import PosteriorDecoderModel | |
from VitsModelSplit.feature_extraction import VitsFeatureExtractor | |
from transformers import AutoTokenizer, HfArgumentParser, set_seed | |
from VitsModelSplit.Arguments import DataTrainingArguments, ModelArguments, VITSTrainingArguments | |
from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset | |
from torch.cuda.amp import autocast, GradScaler | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model=VitsModel.from_pretrained("facebook/mms-tts-eng").to(device) | |
# model1= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/OneBatch/S6/MMMMM-dash-azd60").to("cuda") | |
# model= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/TO/sp3/core/vend").to("cuda") | |
# model=VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/heppa/EndCore3/v0").to("cuda") | |
# model.discriminator=model1.discriminator | |
# model.duration_predictor=model1.duration_predictor | |
# model.setMfA(monotonic_align.maximum_path) | |
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./") | |
feature_extractor = VitsFeatureExtractor() | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments)) | |
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json') | |
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file) | |
sgl=get_state_grad_loss(mel=True, | |
# generator=False, | |
# discriminator=False, | |
duration=False) | |
training_args.num_train_epochs=1000 | |
training_args.fp16=True | |
training_args.eval_steps=300 | |
# sgl=get_state_grad_loss(k1=True,#generator=False, | |
# discriminator=False, | |
# duration=False | |
# ) | |
Lst=['input_ids', | |
'attention_mask', | |
'waveform', | |
'labels', | |
'labels_attention_mask', | |
'mel_scaled_input_features'] | |
def covert_cuda_batch(d): | |
# return d | |
for key in Lst: | |
d[key]=d[key].cuda(non_blocking=True) | |
# for key in d['text_encoder_output']: | |
# d['text_encoder_output'][key]=d['text_encoder_output'][key].cuda(non_blocking=True) | |
# for key in d['posterior_encode_output']: | |
# d['posterior_encode_output'][key]=d['posterior_encode_output'][key].cuda(non_blocking=True) | |
return d | |
def generator_loss(disc_outputs): | |
total_loss = 0 | |
gen_losses = [] | |
for disc_output in disc_outputs: | |
disc_output = disc_output | |
loss = torch.mean((1 - disc_output) ** 2) | |
gen_losses.append(loss) | |
total_loss += loss | |
return total_loss, gen_losses | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
real_losses = 0 | |
generated_losses = 0 | |
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs): | |
real_loss = torch.mean((1 - disc_real) ** 2) | |
generated_loss = torch.mean(disc_generated**2) | |
loss += real_loss + generated_loss | |
real_losses += real_loss | |
generated_losses += generated_loss | |
return loss, real_losses, generated_losses | |
def feature_loss(feature_maps_real, feature_maps_generated): | |
loss = 0 | |
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated): | |
for real, generated in zip(feature_map_real, feature_map_generated): | |
real = real.detach() | |
loss += torch.mean(torch.abs(real - generated)) | |
return loss * 2 | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
""" | |
z_p, logs_q: [b, h, t_t] | |
m_p, logs_p: [b, h, t_t] | |
""" | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
#............................................. | |
# def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask): | |
# kl = prior_log_variance - posterior_log_variance - 0.5 | |
# kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance) | |
# kl = torch.sum(kl * labels_mask) | |
# loss = kl / torch.sum(labels_mask) | |
# return loss | |
def get_state_grad_loss(k1=True, | |
mel=True, | |
duration=True, | |
generator=True, | |
discriminator=True): | |
return {'k1':k1,'mel':mel,'duration':duration,'generator':generator,'discriminator':discriminator} | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1. / norm_type) | |
return total_norm | |
def get_embed_speaker(self,speaker_id): | |
if self.config.num_speakers > 1 and speaker_id is not None: | |
if isinstance(speaker_id, int): | |
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
speaker_id = torch.tensor(speaker_id, device=self.device) | |
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
return self.embed_speaker(speaker_id).unsqueeze(-1) | |
else: | |
return None | |
def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,device): | |
ctrain_datasets=[] | |
for dataset_dir ,id_sp in train_dataset_dirs: | |
train_dataset = FeaturesCollectionDataset(dataset_dir = os.path.join(dataset_dir,'train'), | |
device = device | |
) | |
ctrain_datasets.append((train_dataset,id_sp)) | |
eval_dataset = None | |
if training_args.do_eval: | |
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
device = device | |
) | |
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
device = device) | |
return ctrain_datasets,eval_dataset,full_generation_dataset | |
global_step=0 | |
def trainer_to_cuda(self, | |
ctrain_datasets = None, | |
eval_dataset = None, | |
full_generation_dataset = None, | |
feature_extractor = VitsFeatureExtractor(), | |
training_args = None, | |
full_generation_sample_index= 0, | |
project_name = "Posterior_Decoder_Finetuning", | |
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
is_used_text_encoder=True, | |
is_used_posterior_encode=True, | |
dict_state_grad_loss=None, | |
nk=1, | |
path_save_model='./', | |
maf=None, | |
n_back_save_model=3000, | |
start_speeker=0, | |
end_speeker=1, | |
n_epoch=0, | |
): | |
# os.makedirs(training_args.output_dir,exist_ok=True) | |
# logger = logging.getLogger(f"{__name__} Training") | |
# log_level = training_args.get_process_log_level() | |
# logger.setLevel(log_level) | |
# # wandb.login(key= wandbKey) | |
# # wandb.init(project= project_name,config = training_args.to_dict()) | |
if dict_state_grad_loss is None: | |
dict_state_grad_loss=get_state_grad_loss() | |
global global_step | |
set_seed(training_args.seed) | |
scaler = GradScaler(enabled=training_args.fp16) | |
self.config.save_pretrained(training_args.output_dir) | |
len_db=len(ctrain_datasets) | |
self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
# init optimizer, lr_scheduler | |
for disc in self.discriminator.discriminators: | |
disc.apply_weight_norm() | |
self.decoder.apply_weight_norm() | |
# torch.nn.utils.weight_norm(self.decoder.conv_pre) | |
# torch.nn.utils.weight_norm(self.decoder.conv_post) | |
for flow in self.flow.flows: | |
torch.nn.utils.weight_norm(flow.conv_pre) | |
torch.nn.utils.weight_norm(flow.conv_post) | |
discriminator=self.discriminator | |
self.discriminator=None | |
optimizer = torch.optim.AdamW( | |
self.parameters(), | |
training_args.learning_rate, | |
betas=[training_args.adam_beta1, training_args.adam_beta2], | |
eps=training_args.adam_epsilon, | |
) | |
# hack to be able to train on multiple device | |
disc_optimizer = torch.optim.AdamW( | |
discriminator.parameters(), | |
training_args.d_learning_rate, | |
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2], | |
eps=training_args.adam_epsilon, | |
) | |
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
) | |
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1) | |
logger.info("***** Running training *****") | |
logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
#.......................loop training............................ | |
for epoch in range(training_args.num_train_epochs): | |
train_losses_sum = 0 | |
loss_gen=0 | |
loss_des=0 | |
loss_durationsall=0 | |
loss_melall=0 | |
loss_klall=0 | |
loss_fmapsall=0 | |
lr_scheduler.step() | |
disc_lr_scheduler.step() | |
train_dataset,speaker_id=ctrain_datasets[epoch%len_db] | |
print(f" Num Epochs = {int((epoch+n_epoch)/len_db)}, speaker_id DB ={speaker_id}") | |
num_div_proc=int(len(train_dataset)/10) | |
print(' -process traning : [',end='') | |
for step, batch in enumerate(train_dataset): | |
# if speaker_id==None: | |
# if step<3 :continue | |
# if step>200:break | |
batch=covert_cuda_batch(batch) | |
displayloss={} | |
with autocast(enabled=training_args.fp16): | |
speaker_embeddings=get_embed_speaker(self,batch["speaker_id"] if speaker_id ==None else speaker_id ) | |
waveform,ids_slice,log_duration,prior_latents,posterior_log_variances,prior_means,prior_log_variances,labels_padding_mask = self.forward_train( | |
input_ids=batch["input_ids"], | |
attention_mask=batch["attention_mask"], | |
labels=batch["labels"], | |
labels_attention_mask=batch["labels_attention_mask"], | |
text_encoder_output =None , | |
posterior_encode_output=None , | |
return_dict=True, | |
monotonic_alignment_function= maf, | |
speaker_embeddings=speaker_embeddings | |
) | |
mel_scaled_labels = batch["mel_scaled_input_features"] | |
mel_scaled_target = self.slice_segments(mel_scaled_labels, ids_slice,self.segment_size) | |
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(waveform.squeeze(1))[1] | |
target_waveform = batch["waveform"].transpose(1, 2) | |
target_waveform = self.slice_segments( | |
target_waveform, | |
ids_slice * feature_extractor.hop_length, | |
self.config.segment_size | |
) | |
discriminator_target, fmaps_target = discriminator(target_waveform) | |
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach()) | |
with autocast(enabled=False): | |
if dict_state_grad_loss['discriminator']: | |
loss_disc, loss_real_disc, loss_fake_disc = discriminator_loss( | |
discriminator_target, discriminator_candidate | |
) | |
dk={"step_loss_disc": loss_disc.detach().item(), | |
"step_loss_real_disc": loss_real_disc.detach().item(), | |
"step_loss_fake_disc": loss_fake_disc.detach().item()} | |
displayloss['dict_loss_discriminator']=dk | |
loss_dd = loss_disc# + loss_real_disc + loss_fake_disc | |
# loss_dd.backward() | |
disc_optimizer.zero_grad() | |
scaler.scale(loss_dd).backward() | |
scaler.unscale_(disc_optimizer ) | |
grad_norm_d = clip_grad_value_(discriminator.parameters(), None) | |
scaler.step(disc_optimizer) | |
loss_des+=grad_norm_d | |
with autocast(enabled=training_args.fp16): | |
# backpropagate | |
discriminator_target, fmaps_target = discriminator(target_waveform) | |
discriminator_candidate, fmaps_candidate = discriminator(waveform.detach()) | |
with autocast(enabled=False): | |
if dict_state_grad_loss['k1']: | |
loss_kl = kl_loss( | |
prior_latents, | |
posterior_log_variances, | |
prior_means, | |
prior_log_variances, | |
labels_padding_mask, | |
) | |
loss_kl=loss_kl*training_args.weight_kl | |
loss_klall+=loss_kl.detach().item() | |
#if displayloss['loss_kl']>=0: | |
# loss_kl.backward() | |
if dict_state_grad_loss['mel']: | |
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)*training_args.weight_mel | |
loss_melall+= loss_mel.detach().item() | |
# train_losses_sum = train_losses_sum + displayloss['loss_mel'] | |
# if displayloss['loss_mel']>=0: | |
# loss_mel.backward() | |
if dict_state_grad_loss['duration']: | |
loss_duration=torch.sum(log_duration)*training_args.weight_duration | |
loss_durationsall+=loss_duration.detach().item() | |
# if displayloss['loss_duration']>=0: | |
# loss_duration.backward() | |
if dict_state_grad_loss['generator']: | |
loss_fmaps = feature_loss(fmaps_target, fmaps_candidate) | |
loss_gen, losses_gen = generator_loss(discriminator_candidate) | |
loss_gen=loss_gen * training_args.weight_gen | |
displayloss['loss_gen'] = loss_gen.detach().item() | |
# loss_gen.backward(retain_graph=True) | |
loss_fmaps=loss_fmaps * training_args.weight_fmaps | |
displayloss['loss_fmaps'] = loss_fmaps.detach().item() | |
# loss_fmaps.backward(retain_graph=True) | |
total_generator_loss = ( | |
loss_duration | |
+ loss_mel | |
+ loss_kl | |
+ loss_fmaps | |
+ loss_gen | |
) | |
# total_generator_loss.backward() | |
optimizer.zero_grad() | |
scaler.scale(total_generator_loss).backward() | |
scaler.unscale_(optimizer) | |
grad_norm_g = clip_grad_value_(self.parameters(), None) | |
scaler.step(optimizer) | |
scaler.update() | |
loss_gen+=grad_norm_g | |
# optimizer.step() | |
# print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
# print(f"display loss function enable :{displayloss}") | |
global_step +=1 | |
if step%num_div_proc==0: | |
print('==',end='') | |
# validation | |
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
if do_eval: | |
speaker_id_c=int(torch.randint(start_speeker,end_speeker,size=(1,))[0]) | |
logger.info("Running validation... ") | |
eval_losses_sum = 0 | |
cc=0; | |
for step, batch in enumerate(eval_dataset): | |
break | |
if cc>2: break | |
cc+=1 | |
with torch.no_grad(): | |
model_outputs = self.forward( | |
input_ids=batch["input_ids"], | |
attention_mask=batch["attention_mask"], | |
labels=batch["labels"], | |
labels_attention_mask=batch["labels_attention_mask"], | |
speaker_id=batch["speaker_id"], | |
return_dict=True, | |
) | |
mel_scaled_labels = batch["mel_scaled_input_features"] | |
mel_scaled_target = self.slice_segments(mel_scaled_labels, model_outputs.ids_slice,self.segment_size) | |
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(model_outputs.waveform.squeeze(1))[1] | |
loss = loss_mel.detach().item() | |
eval_losses_sum +=loss | |
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
with torch.no_grad(): | |
full_generation_sample = self.full_generation_sample | |
full_generation =self.forward( | |
input_ids =full_generation_sample["input_ids"], | |
attention_mask=full_generation_sample["attention_mask"], | |
speaker_id=speaker_id_c | |
) | |
full_generation_waveform = full_generation.waveform.cpu().numpy() | |
wandb.log({ | |
"eval_losses": eval_losses_sum, | |
"full generations samples": [ | |
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=16000) | |
for w in full_generation_waveform],}) | |
step+=1 | |
# wandb.log({"train_losses":loss_melall}) | |
wandb.log({"loss_gen":loss_gen/step}) | |
wandb.log({"loss_des":loss_des/step}) | |
wandb.log({"loss_duration":loss_durationsall/step}) | |
wandb.log({"loss_mel":loss_melall/step}) | |
wandb.log({f"loss_kl_db{speaker_id}":loss_klall/step}) | |
print(']',end='') | |
# self.save_pretrained(path_save_model) | |
self.discriminator=discriminator | |
for disc in self.discriminator.discriminators: | |
disc.remove_weight_norm() | |
self.decoder.remove_weight_norm() | |
# torch.nn.utils.remove_weight_norm(self.decoder.conv_pre) | |
# torch.nn.utils.remove_weight_norm(self.decoder.conv_post) | |
for flow in self.flow.flows: | |
torch.nn.utils.remove_weight_norm(flow.conv_pre) | |
torch.nn.utils.remove_weight_norm(flow.conv_post) | |
self.save_pretrained(path_save_model) | |
logger.info("Running final full generations samples... ") | |
logger.info("***** Training / Inference Done *****") | |
def modelspeech(texts): | |
inputs = tokenizer(texts, return_tensors="pt")#.cuda() | |
wav = model_vits(input_ids=inputs["input_ids"]).waveform#.detach() | |
# display(Audio(wav, rate=model.config.sampling_rate)) | |
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav) | |
def greet(text,id): | |
global GK | |
b=int(id) | |
while True: | |
GK+=1 | |
texts=[text]*b | |
out=modelspeech(texts) | |
yield f"namber is {GK}" | |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text") | |
demo.launch() | |