Spaces:
Sleeping
Sleeping
File size: 10,469 Bytes
2da45ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from transformers import TrainingArguments
from typing import Any, Optional
from dataclasses import dataclass, field
#.............................................
#### ARGUMENTS
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
"should only be set to `True` for repositories you trust and in which you have read the code, as it will"
"execute code present on the Hub on your local machine."
)
},
)
override_speaker_embeddings: bool = field(
default=False,
metadata={
"help": (
"If `True` and if `speaker_id_column_name` is specified, it will replace current speaker embeddings with a new set of speaker embeddings."
"If the model from the checkpoint didn't have speaker embeddings, it will initialize speaker embeddings."
)
},
)
override_vocabulary_embeddings: bool = field(
default=False,
metadata={
"help": (
"If `True`, it will resize the token embeddings based on the vocabulary size of the tokenizer. In other words, use this when you use a different tokenizer than the one that was used during pretraining."
)
},
)
#.............................................................................................
@dataclass
class VITSTrainingArguments(TrainingArguments):
do_step_schedule_per_epoch: bool = field(
default=True,
metadata={
"help": (
"Whether or not to perform scheduler steps per epoch or per steps. If `True`, the scheduler will be `ExponentialLR` parametrized with `lr_decay`."
)
},
)
lr_decay: float = field(
default=0.999875,
metadata={"help": "Learning rate decay, used with `ExponentialLR` when `do_step_schedule_per_epoch`."},
)
weight_duration: float = field(default=1.0, metadata={"help": "Duration loss weight."})
weight_kl: float = field(default=1.5, metadata={"help": "KL loss weight."})
weight_mel: float = field(default=35.0, metadata={"help": "Mel-spectrogram loss weight"})
weight_disc: float = field(default=3.0, metadata={"help": "Discriminator loss weight"})
weight_gen: float = field(default=1.0, metadata={"help": "Generator loss weight"})
weight_fmaps: float = field(default=1.0, metadata={"help": "Feature map loss weight"})
d_learning_rate: float = field(default=2e-4, metadata={"help": "Feature map loss weight"})
d_adam_beta1: float = field(default=0.8, metadata={"help": "Feature map loss weight"})
d_adam_beta2: float = field(default=0.99, metadata={"help": "Feature map loss weight"})
#.............................................................................................
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
project_name: str = field(
default="vits_finetuning",
metadata={"help": "The project name associated to this run. Useful to track your experiment."},
)
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
speaker_id_column_name: str = field(
default=None,
metadata={
"help": """If set, corresponds to the name of the speaker id column containing the speaker ids.
If `override_speaker_embeddings=False`:
it assumes that speakers are indexed from 0 to `num_speakers-1`.
`num_speakers` and `speaker_embedding_size` have to be set in the model config.
If `override_speaker_embeddings=True`:
It will use this column to compute how many speakers there are.
Defaults to None, i.e it is not used by default."""
},
)
filter_on_speaker_id: int = field(
default=None,
metadata={
"help": (
"If `speaker_id_column_name` and `filter_on_speaker_id` are set, will filter the dataset to keep a single speaker_id (`filter_on_speaker_id`) "
)
},
)
max_tokens_length: float = field(
default=450,
metadata={
"help": ("Truncate audio files with a transcription that are longer than `max_tokens_length` tokens")
},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": (
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
do_lower_case: bool = field(
default=False,
metadata={"help": "Whether the input text should be lower cased."},
)
do_normalize: bool = field(
default=False,
metadata={"help": "Whether the input waveform should be normalized."},
)
full_generation_sample_text: str = field(
default="This is a test, let's see what comes out of this.",
metadata={
"help": (
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
"only. For English speech recognition, it should be set to `None`."
)
},
)
uroman_path: str = field(
default=None,
metadata={
"help": (
"Absolute path to the uroman package. To use if your model requires `uroman`."
"An easy way to check it is to go on your model card and manually check `is_uroman` in the `tokenizer_config.json,"
"e.g the French checkpoint doesn't need it: https://huggingface.co/facebook/mms-tts-fra/blob/main/tokenizer_config.json#L4"
)
},
)
#.............................................................................................
|