Spaces:
Sleeping
Sleeping
Update calculate_cosine_similarity.py
Browse files- calculate_cosine_similarity.py +118 -22
calculate_cosine_similarity.py
CHANGED
|
@@ -1,14 +1,58 @@
|
|
|
|
|
|
|
|
| 1 |
from pymongo import MongoClient
|
| 2 |
import numpy as np
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
|
| 5 |
# MongoDB Atlas 연결
|
| 6 |
-
client = MongoClient(
|
|
|
|
|
|
|
| 7 |
db = client["two_tower_model"]
|
| 8 |
user_embedding_collection = db["user_embeddings"]
|
| 9 |
product_embedding_collection = db["product_embeddings"]
|
| 10 |
train_dataset = db["train_dataset"]
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# 유사도 계산 함수
|
| 13 |
def calculate_similarity(input_embedding, target_embeddings):
|
| 14 |
"""
|
|
@@ -17,67 +61,119 @@ def calculate_similarity(input_embedding, target_embeddings):
|
|
| 17 |
similarities = cosine_similarity(input_embedding, target_embeddings).flatten()
|
| 18 |
return similarities
|
| 19 |
|
| 20 |
-
|
|
|
|
| 21 |
"""
|
| 22 |
사용자 임베딩을 기준으로 가장 유사한 anchor 상품을 반환.
|
| 23 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# 사용자 임베딩 가져오기
|
| 25 |
user_data = user_embedding_collection.find_one({"user_id": user_id})
|
|
|
|
| 26 |
if not user_data:
|
| 27 |
raise ValueError(f"No embedding found for user_id: {user_id}")
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
anchors, anchor_embeddings = [], []
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
anchor_embeddings = np.array(anchor_embeddings)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
| 40 |
# Cosine Similarity 계산
|
| 41 |
-
similarities = calculate_similarity(
|
|
|
|
|
|
|
| 42 |
most_similar_index = np.argmax(similarities)
|
| 43 |
|
| 44 |
return anchors[most_similar_index], anchor_embeddings[most_similar_index]
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
"""
|
| 48 |
-
Anchor
|
| 49 |
"""
|
| 50 |
-
# Train 데이터의 positive/negative 임베딩과 비교
|
| 51 |
-
train_data = list(train_dataset.find())
|
| 52 |
train_embeddings, products = [], []
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
train_embeddings = np.array(train_embeddings)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
# Cosine Similarity 계산
|
| 60 |
-
similarities = calculate_similarity(
|
|
|
|
|
|
|
| 61 |
most_similar_index = np.argmax(similarities)
|
| 62 |
|
| 63 |
return products[most_similar_index], train_embeddings[most_similar_index]
|
| 64 |
|
|
|
|
| 65 |
def recommend_shop_product(similar_product_embedding):
|
| 66 |
"""
|
| 67 |
-
|
| 68 |
"""
|
| 69 |
-
# 쇼핑몰 상품 임베딩 데이터 가져오기
|
| 70 |
all_products = list(product_embedding_collection.find())
|
| 71 |
shop_product_embeddings, shop_product_ids = [], []
|
|
|
|
| 72 |
for product in all_products:
|
| 73 |
shop_product_ids.append(product["product_id"])
|
| 74 |
shop_product_embeddings.append(product["embedding"])
|
| 75 |
|
| 76 |
shop_product_embeddings = np.array(shop_product_embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Cosine Similarity 계산
|
| 79 |
-
similarities = calculate_similarity(
|
|
|
|
|
|
|
| 80 |
most_similar_index = np.argmax(similarities)
|
| 81 |
|
| 82 |
return shop_product_ids[most_similar_index]
|
| 83 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
from pymongo import MongoClient
|
| 4 |
import numpy as np
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
|
| 7 |
# MongoDB Atlas 연결
|
| 8 |
+
client = MongoClient(
|
| 9 |
+
"mongodb+srv://waseoke:[email protected]/test?retryWrites=true&w=majority"
|
| 10 |
+
)
|
| 11 |
db = client["two_tower_model"]
|
| 12 |
user_embedding_collection = db["user_embeddings"]
|
| 13 |
product_embedding_collection = db["product_embeddings"]
|
| 14 |
train_dataset = db["train_dataset"]
|
| 15 |
|
| 16 |
+
|
| 17 |
+
# Autoencoder 모델 정의 (512차원 -> 128차원)
|
| 18 |
+
class Autoencoder(nn.Module):
|
| 19 |
+
def __init__(self):
|
| 20 |
+
super(Autoencoder, self).__init__()
|
| 21 |
+
self.encoder = nn.Sequential(
|
| 22 |
+
nn.Linear(512, 256), # 512 -> 256
|
| 23 |
+
nn.ReLU(),
|
| 24 |
+
nn.Linear(256, 128), # 256 -> 128
|
| 25 |
+
)
|
| 26 |
+
self.decoder = nn.Sequential(
|
| 27 |
+
nn.Linear(128, 256), # 128 -> 256
|
| 28 |
+
nn.ReLU(),
|
| 29 |
+
nn.Linear(256, 512), # 256 -> 512
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
return self.encoder(x)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Autoencoder를 초기화하고 학습된 모델을 로드
|
| 37 |
+
autoencoder = Autoencoder()
|
| 38 |
+
autoencoder.eval() # 학습된 모델 사용 시
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# 학습된 모델 로드
|
| 42 |
+
def load_trained_model(model_path="product_model.pth"):
|
| 43 |
+
"""
|
| 44 |
+
학습된 모델을 로드.
|
| 45 |
+
"""
|
| 46 |
+
model = torch.nn.Sequential(
|
| 47 |
+
torch.nn.Linear(768, 256), # 768: KoBERT 임베딩 차원
|
| 48 |
+
torch.nn.ReLU(),
|
| 49 |
+
torch.nn.Linear(256, 128),
|
| 50 |
+
)
|
| 51 |
+
model.load_state_dict(torch.load(model_path))
|
| 52 |
+
model.eval() # 평가 모드
|
| 53 |
+
return model
|
| 54 |
+
|
| 55 |
+
|
| 56 |
# 유사도 계산 함수
|
| 57 |
def calculate_similarity(input_embedding, target_embeddings):
|
| 58 |
"""
|
|
|
|
| 61 |
similarities = cosine_similarity(input_embedding, target_embeddings).flatten()
|
| 62 |
return similarities
|
| 63 |
|
| 64 |
+
|
| 65 |
+
def find_most_similar_anchor(user_id, model):
|
| 66 |
"""
|
| 67 |
사용자 임베딩을 기준으로 가장 유사한 anchor 상품을 반환.
|
| 68 |
"""
|
| 69 |
+
# user_id의 데이터 타입 확인 및 변환
|
| 70 |
+
if isinstance(user_id, str) and user_id.isdigit():
|
| 71 |
+
user_id = int(user_id)
|
| 72 |
+
|
| 73 |
# 사용자 임베딩 가져오기
|
| 74 |
user_data = user_embedding_collection.find_one({"user_id": user_id})
|
| 75 |
+
|
| 76 |
if not user_data:
|
| 77 |
raise ValueError(f"No embedding found for user_id: {user_id}")
|
| 78 |
+
user_embedding = torch.tensor(
|
| 79 |
+
user_data["embedding"][0], dtype=torch.float32
|
| 80 |
+
).unsqueeze(0)
|
| 81 |
+
|
| 82 |
+
padding = torch.zeros((1, 768 - 512))
|
| 83 |
+
user_embedding = torch.cat((user_embedding, padding), dim=1)
|
| 84 |
|
| 85 |
+
# 사용자 임베딩 차원 축소 (768 -> 128)
|
| 86 |
+
user_embedding = model[0](user_embedding) # 첫 번째 레이어만 사용하여 차원 축소
|
| 87 |
+
user_embedding = model[2](user_embedding) # 마지막 레이어 적용 (128 차원)
|
| 88 |
+
|
| 89 |
+
# Anchor 데이터 생성
|
| 90 |
anchors, anchor_embeddings = [], []
|
| 91 |
+
|
| 92 |
+
# Anchor 데이터를 product_model.pth에서 추출
|
| 93 |
+
for _ in range(100): # Anchor 데이터가 100개라고 가정
|
| 94 |
+
random_input = torch.rand((1, 768)) # KoBERT 차원에 맞는 랜덤 데이터
|
| 95 |
+
anchor_embedding = model(random_input).detach().numpy().flatten()
|
| 96 |
+
anchors.append(f"Product_{len(anchors) + 1}") # Anchor 상품 이름
|
| 97 |
+
anchor_embeddings.append(anchor_embedding)
|
| 98 |
|
| 99 |
anchor_embeddings = np.array(anchor_embeddings)
|
| 100 |
|
| 101 |
+
print(f"User embedding dimension: {user_embedding.shape}")
|
| 102 |
+
print(f"Anchor embedding dimension: {anchor_embeddings.shape}")
|
| 103 |
+
|
| 104 |
# Cosine Similarity 계산
|
| 105 |
+
similarities = calculate_similarity(
|
| 106 |
+
user_embedding.detach().numpy().reshape(1, -1), anchor_embeddings
|
| 107 |
+
)
|
| 108 |
most_similar_index = np.argmax(similarities)
|
| 109 |
|
| 110 |
return anchors[most_similar_index], anchor_embeddings[most_similar_index]
|
| 111 |
|
| 112 |
+
|
| 113 |
+
def find_most_similar_product(anchor_embedding, model):
|
| 114 |
"""
|
| 115 |
+
Anchor 임베딩을 기반으로 학습된 positive/negative 상품 중 가장 유사한 상품을 반환.
|
| 116 |
"""
|
|
|
|
|
|
|
| 117 |
train_embeddings, products = [], []
|
| 118 |
+
# Anchor 데이터와 유사한 상품 임베딩을 생성
|
| 119 |
+
for _ in range(100): # 예시로 100개의 상품 임베딩을 계산한다고 가정
|
| 120 |
+
random_input = torch.rand((1, 768)) # KoBERT 차원에 맞는 랜덤 데이터
|
| 121 |
+
train_embedding = (
|
| 122 |
+
model(random_input).detach().numpy().flatten()
|
| 123 |
+
) # 모델을 통해 임베딩 계산
|
| 124 |
+
products.append(f"Product_{len(products) + 1}") # 상품 이름
|
| 125 |
+
train_embeddings.append(train_embedding)
|
| 126 |
|
| 127 |
train_embeddings = np.array(train_embeddings)
|
| 128 |
|
| 129 |
+
print(f"Anchor embedding dimension: {anchor_embedding.shape}")
|
| 130 |
+
print(f"Train embedding dimension: {train_embeddings.shape}")
|
| 131 |
+
|
| 132 |
# Cosine Similarity 계산
|
| 133 |
+
similarities = calculate_similarity(
|
| 134 |
+
anchor_embedding.reshape(1, -1), train_embeddings
|
| 135 |
+
)
|
| 136 |
most_similar_index = np.argmax(similarities)
|
| 137 |
|
| 138 |
return products[most_similar_index], train_embeddings[most_similar_index]
|
| 139 |
|
| 140 |
+
|
| 141 |
def recommend_shop_product(similar_product_embedding):
|
| 142 |
"""
|
| 143 |
+
학습된 상품과 쇼핑몰 상품 임베딩을 비교하여 최종 추천 상품 반환.
|
| 144 |
"""
|
|
|
|
| 145 |
all_products = list(product_embedding_collection.find())
|
| 146 |
shop_product_embeddings, shop_product_ids = [], []
|
| 147 |
+
|
| 148 |
for product in all_products:
|
| 149 |
shop_product_ids.append(product["product_id"])
|
| 150 |
shop_product_embeddings.append(product["embedding"])
|
| 151 |
|
| 152 |
shop_product_embeddings = np.array(shop_product_embeddings)
|
| 153 |
+
shop_product_embeddings = shop_product_embeddings.reshape(
|
| 154 |
+
shop_product_embeddings.shape[0], -1
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Shop 제품 임베딩을 NumPy 배열로 변환
|
| 158 |
+
shop_product_embeddings = np.array(shop_product_embeddings)
|
| 159 |
+
|
| 160 |
+
# Autoencoder로 차원 축소 (512 -> 128)
|
| 161 |
+
shop_product_embeddings_reduced = (
|
| 162 |
+
autoencoder.encoder(torch.tensor(shop_product_embeddings).float())
|
| 163 |
+
.detach()
|
| 164 |
+
.numpy()
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# similar_product_embedding을 (1, 128)로 변환
|
| 168 |
+
similar_product_embedding = similar_product_embedding.reshape(1, -1)
|
| 169 |
+
|
| 170 |
+
print(f"Similar product embedding dimension: {similar_product_embedding.shape}")
|
| 171 |
+
print(f"Shop product embedding dimension: {shop_product_embeddings_reduced.shape}")
|
| 172 |
|
| 173 |
# Cosine Similarity 계산
|
| 174 |
+
similarities = calculate_similarity(
|
| 175 |
+
similar_product_embedding, shop_product_embeddings_reduced
|
| 176 |
+
)
|
| 177 |
most_similar_index = np.argmax(similarities)
|
| 178 |
|
| 179 |
return shop_product_ids[most_similar_index]
|
|
|