Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -53,100 +53,6 @@ uploads_dir = os.path.join(app.root_path,'static', 'uploads')
|
|
53 |
|
54 |
os.makedirs(uploads_dir, exist_ok=True)
|
55 |
|
56 |
-
vectordb = createVectorDB(loadKB(False, False, uploads_dir, None))
|
57 |
-
|
58 |
-
@app.route('/', methods=['GET'])
|
59 |
-
def test():
|
60 |
-
return "Docker hello"
|
61 |
-
|
62 |
-
@app.route('/KBUploader')
|
63 |
-
def KBUpload():
|
64 |
-
return render_template("KBTrain.html")
|
65 |
-
|
66 |
-
@app.route('/aiassist')
|
67 |
-
def aiassist():
|
68 |
-
return render_template("index.html")
|
69 |
-
|
70 |
-
@app.route('/agent/chat/suggestion', methods=['POST'])
|
71 |
-
def process_json():
|
72 |
-
print(f"\n{'*' * 100}\n")
|
73 |
-
print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
|
74 |
-
content_type = request.headers.get('Content-Type')
|
75 |
-
if (content_type == 'application/json'):
|
76 |
-
requestQuery = request.get_json()
|
77 |
-
print(type(requestQuery))
|
78 |
-
custDetailsPresent=False
|
79 |
-
customerName=""
|
80 |
-
customerDistrict=""
|
81 |
-
if("custDetails" in requestQuery):
|
82 |
-
custDetailsPresent = True
|
83 |
-
customerName=requestQuery['custDetails']['cName']
|
84 |
-
customerDistrict=requestQuery['custDetails']['cDistrict']
|
85 |
-
|
86 |
-
print("chain initiation")
|
87 |
-
chainRAG=getRAGChain(customerName, customerDistrict, custDetailsPresent,vectordb)
|
88 |
-
print("chain created")
|
89 |
-
suggestionArray = []
|
90 |
-
|
91 |
-
for index, query in enumerate(requestQuery['message']):
|
92 |
-
#message = answering(query)
|
93 |
-
relevantDoc = vectordb.similarity_search_with_score(query)
|
94 |
-
for doc in relevantDoc:
|
95 |
-
print(f"\n{'-' * 100}\n")
|
96 |
-
print("Document Source>>>>>> " + doc[len(doc) - 2].metadata['source'] + "\n\n")
|
97 |
-
print("Page Content>>>>>> " + doc[len(doc) - 2].page_content + "\n\n")
|
98 |
-
print("Similarity Score>>>> " + str(doc[len(doc) - 1]))
|
99 |
-
print(f"\n{'-' * 100}\n")
|
100 |
-
message = chainRAG.run({"query": query})
|
101 |
-
print("query:",query)
|
102 |
-
print("Response:", message)
|
103 |
-
if "I don't know" in message:
|
104 |
-
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
|
105 |
-
responseJSON={"message":message,"id":index}
|
106 |
-
suggestionArray.append(responseJSON)
|
107 |
-
return jsonify(suggestions=suggestionArray)
|
108 |
-
else:
|
109 |
-
return 'Content-Type not supported!'
|
110 |
-
|
111 |
-
@app.route('/file_upload', methods=['POST'])
|
112 |
-
def file_Upload():
|
113 |
-
fileprovided = not request.files.getlist('files[]')[0].filename == ''
|
114 |
-
urlProvided = not request.form.getlist('weburl')[0] == ''
|
115 |
-
print("*******")
|
116 |
-
print("File Provided:" + str(fileprovided))
|
117 |
-
print("URL Provided:" + str(urlProvided))
|
118 |
-
print("*******")
|
119 |
-
|
120 |
-
print(uploads_dir)
|
121 |
-
documents = loadKB(fileprovided, urlProvided, uploads_dir, request)
|
122 |
-
vectordb=createVectorDB(documents)
|
123 |
-
return render_template("index.html")
|
124 |
-
|
125 |
-
def createPrompt(cName, cCity, custDetailsPresent):
|
126 |
-
cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n"
|
127 |
-
print(cProfile)
|
128 |
-
|
129 |
-
template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist.
|
130 |
-
You are talking to the below customer whose information is provided in block delimited by <cp></cp>.
|
131 |
-
Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps:
|
132 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
133 |
-
Use the customer information to replace entities in the question before answering\n
|
134 |
-
\n"""
|
135 |
-
|
136 |
-
template2 = """
|
137 |
-
<ctx>
|
138 |
-
{context}
|
139 |
-
</ctx>
|
140 |
-
<hs>
|
141 |
-
{history}
|
142 |
-
</hs>
|
143 |
-
Question: {question}
|
144 |
-
Answer: """
|
145 |
-
|
146 |
-
prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2
|
147 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"])
|
148 |
-
return PROMPT
|
149 |
-
|
150 |
|
151 |
def pretty_print_docs(docs):
|
152 |
print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str(
|
@@ -236,6 +142,99 @@ def createVectorDB(documents):
|
|
236 |
vectordb = Chroma.from_documents(texts, embeddings)
|
237 |
return vectordb
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
if __name__ == '__main__':
|
241 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
|
|
53 |
|
54 |
os.makedirs(uploads_dir, exist_ok=True)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def pretty_print_docs(docs):
|
58 |
print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str(
|
|
|
142 |
vectordb = Chroma.from_documents(texts, embeddings)
|
143 |
return vectordb
|
144 |
|
145 |
+
def createPrompt(cName, cCity, custDetailsPresent):
|
146 |
+
cProfile = "Customer's Name is " + cName + "\nCustomer's lives in or customer's Resident State or Customer's place is " + cCity + "\n"
|
147 |
+
print(cProfile)
|
148 |
+
|
149 |
+
template1 = """You role is of a Professional Customer Support Executive and your name is Jio AIAssist.
|
150 |
+
You are talking to the below customer whose information is provided in block delimited by <cp></cp>.
|
151 |
+
Use the following customer related information (delimited by <cp></cp>) and context (delimited by <ctx></ctx>) to answer the question at the end by thinking step by step alongwith reaonsing steps:
|
152 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
153 |
+
Use the customer information to replace entities in the question before answering\n
|
154 |
+
\n"""
|
155 |
+
|
156 |
+
template2 = """
|
157 |
+
<ctx>
|
158 |
+
{context}
|
159 |
+
</ctx>
|
160 |
+
<hs>
|
161 |
+
{history}
|
162 |
+
</hs>
|
163 |
+
Question: {question}
|
164 |
+
Answer: """
|
165 |
+
|
166 |
+
prompt_template = template1 + "<cp>\n" + cProfile + "\n</cp>\n" + template2
|
167 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["history", "context", "question"])
|
168 |
+
return PROMPT
|
169 |
+
|
170 |
+
vectordb = createVectorDB(loadKB(False, False, uploads_dir, None))
|
171 |
+
|
172 |
+
@app.route('/', methods=['GET'])
|
173 |
+
def test():
|
174 |
+
return "Docker hello"
|
175 |
+
|
176 |
+
@app.route('/KBUploader')
|
177 |
+
def KBUpload():
|
178 |
+
return render_template("KBTrain.html")
|
179 |
+
|
180 |
+
@app.route('/aiassist')
|
181 |
+
def aiassist():
|
182 |
+
return render_template("index.html")
|
183 |
+
|
184 |
+
@app.route('/agent/chat/suggestion', methods=['POST'])
|
185 |
+
def process_json():
|
186 |
+
print(f"\n{'*' * 100}\n")
|
187 |
+
print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
|
188 |
+
content_type = request.headers.get('Content-Type')
|
189 |
+
if (content_type == 'application/json'):
|
190 |
+
requestQuery = request.get_json()
|
191 |
+
print(type(requestQuery))
|
192 |
+
custDetailsPresent=False
|
193 |
+
customerName=""
|
194 |
+
customerDistrict=""
|
195 |
+
if("custDetails" in requestQuery):
|
196 |
+
custDetailsPresent = True
|
197 |
+
customerName=requestQuery['custDetails']['cName']
|
198 |
+
customerDistrict=requestQuery['custDetails']['cDistrict']
|
199 |
+
|
200 |
+
print("chain initiation")
|
201 |
+
chainRAG=getRAGChain(customerName, customerDistrict, custDetailsPresent,vectordb)
|
202 |
+
print("chain created")
|
203 |
+
suggestionArray = []
|
204 |
+
|
205 |
+
for index, query in enumerate(requestQuery['message']):
|
206 |
+
#message = answering(query)
|
207 |
+
relevantDoc = vectordb.similarity_search_with_score(query)
|
208 |
+
for doc in relevantDoc:
|
209 |
+
print(f"\n{'-' * 100}\n")
|
210 |
+
print("Document Source>>>>>> " + doc[len(doc) - 2].metadata['source'] + "\n\n")
|
211 |
+
print("Page Content>>>>>> " + doc[len(doc) - 2].page_content + "\n\n")
|
212 |
+
print("Similarity Score>>>> " + str(doc[len(doc) - 1]))
|
213 |
+
print(f"\n{'-' * 100}\n")
|
214 |
+
message = chainRAG.run({"query": query})
|
215 |
+
print("query:",query)
|
216 |
+
print("Response:", message)
|
217 |
+
if "I don't know" in message:
|
218 |
+
message = "Dear Sir/ Ma'am, Could you please ask questions relevant to Jio?"
|
219 |
+
responseJSON={"message":message,"id":index}
|
220 |
+
suggestionArray.append(responseJSON)
|
221 |
+
return jsonify(suggestions=suggestionArray)
|
222 |
+
else:
|
223 |
+
return 'Content-Type not supported!'
|
224 |
+
|
225 |
+
@app.route('/file_upload', methods=['POST'])
|
226 |
+
def file_Upload():
|
227 |
+
fileprovided = not request.files.getlist('files[]')[0].filename == ''
|
228 |
+
urlProvided = not request.form.getlist('weburl')[0] == ''
|
229 |
+
print("*******")
|
230 |
+
print("File Provided:" + str(fileprovided))
|
231 |
+
print("URL Provided:" + str(urlProvided))
|
232 |
+
print("*******")
|
233 |
+
|
234 |
+
print(uploads_dir)
|
235 |
+
documents = loadKB(fileprovided, urlProvided, uploads_dir, request)
|
236 |
+
vectordb=createVectorDB(documents)
|
237 |
+
return render_template("index.html")
|
238 |
|
239 |
if __name__ == '__main__':
|
240 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|