Spaces:
Runtime error
Runtime error
| # Ultralytics YOLOv5 🚀, AGPL-3.0 license | |
| """ | |
| Run YOLOv5 benchmarks on all supported export formats. | |
| Format | `export.py --include` | Model | |
| --- | --- | --- | |
| PyTorch | - | yolov5s.pt | |
| TorchScript | `torchscript` | yolov5s.torchscript | |
| ONNX | `onnx` | yolov5s.onnx | |
| OpenVINO | `openvino` | yolov5s_openvino_model/ | |
| TensorRT | `engine` | yolov5s.engine | |
| CoreML | `coreml` | yolov5s.mlmodel | |
| TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ | |
| TensorFlow GraphDef | `pb` | yolov5s.pb | |
| TensorFlow Lite | `tflite` | yolov5s.tflite | |
| TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite | |
| TensorFlow.js | `tfjs` | yolov5s_web_model/ | |
| Requirements: | |
| $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU | |
| $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU | |
| $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT | |
| Usage: | |
| $ python benchmarks.py --weights yolov5s.pt --img 640 | |
| """ | |
| import argparse | |
| import platform | |
| import sys | |
| import time | |
| from pathlib import Path | |
| import pandas as pd | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| # ROOT = ROOT.relative_to(Path.cwd()) # relative | |
| import export | |
| from models.experimental import attempt_load | |
| from models.yolo import SegmentationModel | |
| from segment.val import run as val_seg | |
| from utils import notebook_init | |
| from utils.general import LOGGER, check_yaml, file_size, print_args | |
| from utils.torch_utils import select_device | |
| from val import run as val_det | |
| def run( | |
| weights=ROOT / "yolov5s.pt", # weights path | |
| imgsz=640, # inference size (pixels) | |
| batch_size=1, # batch size | |
| data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| half=False, # use FP16 half-precision inference | |
| test=False, # test exports only | |
| pt_only=False, # test PyTorch only | |
| hard_fail=False, # throw error on benchmark failure | |
| ): | |
| """Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.""" | |
| y, t = [], time.time() | |
| device = select_device(device) | |
| model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. | |
| for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) | |
| try: | |
| assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported | |
| assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML | |
| if "cpu" in device.type: | |
| assert cpu, "inference not supported on CPU" | |
| if "cuda" in device.type: | |
| assert gpu, "inference not supported on GPU" | |
| # Export | |
| if f == "-": | |
| w = weights # PyTorch format | |
| else: | |
| w = export.run( | |
| weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half | |
| )[-1] # all others | |
| assert suffix in str(w), "export failed" | |
| # Validate | |
| if model_type == SegmentationModel: | |
| result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) | |
| metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) | |
| else: # DetectionModel: | |
| result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) | |
| metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) | |
| speed = result[2][1] # times (preprocess, inference, postprocess) | |
| y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference | |
| except Exception as e: | |
| if hard_fail: | |
| assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}" | |
| LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}") | |
| y.append([name, None, None, None]) # mAP, t_inference | |
| if pt_only and i == 0: | |
| break # break after PyTorch | |
| # Print results | |
| LOGGER.info("\n") | |
| parse_opt() | |
| notebook_init() # print system info | |
| c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""] | |
| py = pd.DataFrame(y, columns=c) | |
| LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)") | |
| LOGGER.info(str(py if map else py.iloc[:, :2])) | |
| if hard_fail and isinstance(hard_fail, str): | |
| metrics = py["mAP50-95"].array # values to compare to floor | |
| floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n | |
| assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}" | |
| return py | |
| def test( | |
| weights=ROOT / "yolov5s.pt", # weights path | |
| imgsz=640, # inference size (pixels) | |
| batch_size=1, # batch size | |
| data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| half=False, # use FP16 half-precision inference | |
| test=False, # test exports only | |
| pt_only=False, # test PyTorch only | |
| hard_fail=False, # throw error on benchmark failure | |
| ): | |
| """Run YOLOv5 export tests for all supported formats and log the results, including inference speed and mAP.""" | |
| y, t = [], time.time() | |
| device = select_device(device) | |
| for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) | |
| try: | |
| w = ( | |
| weights | |
| if f == "-" | |
| else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] | |
| ) # weights | |
| assert suffix in str(w), "export failed" | |
| y.append([name, True]) | |
| except Exception: | |
| y.append([name, False]) # mAP, t_inference | |
| # Print results | |
| LOGGER.info("\n") | |
| parse_opt() | |
| notebook_init() # print system info | |
| py = pd.DataFrame(y, columns=["Format", "Export"]) | |
| LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)") | |
| LOGGER.info(str(py)) | |
| return py | |
| def parse_opt(): | |
| """Parses command-line arguments for YOLOv5 model inference configuration.""" | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path") | |
| parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)") | |
| parser.add_argument("--batch-size", type=int, default=1, help="batch size") | |
| parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") | |
| parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") | |
| parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") | |
| parser.add_argument("--test", action="store_true", help="test exports only") | |
| parser.add_argument("--pt-only", action="store_true", help="test PyTorch only") | |
| parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric") | |
| opt = parser.parse_args() | |
| opt.data = check_yaml(opt.data) # check YAML | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| """Executes a test run if `opt.test` is True, otherwise starts training or inference with provided options.""" | |
| test(**vars(opt)) if opt.test else run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |