Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
11 |
+
#标题
|
12 |
+
title = "抽取式问答"
|
13 |
+
#标题下的描述,支持md格式
|
14 |
+
description = "输入上下文与问题后,点击submit按钮,可从上下文中抽取出答案,赶快试试吧!"
|
15 |
+
|
16 |
+
# Download human-readable labels for ImageNet.
|
17 |
+
# response = requests.get("http://git.io/JJkYN")
|
18 |
+
# labels = response.text.split("\n")
|
19 |
+
# 打开文件
|
20 |
+
file = open('gradio/label.txt', 'r')
|
21 |
+
# 读取文件内容
|
22 |
+
labels = file.readlines()
|
23 |
+
def to_black(inp,long,lat,Area):
|
24 |
+
inp = Image.fromarray(inp.astype('uint8'), 'RGB')
|
25 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
26 |
+
with torch.no_grad():
|
27 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
28 |
+
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
29 |
+
|
30 |
+
outputs = gr.outputs.Label(num_top_classes=3)
|
31 |
+
interface = gr.Interface(fn=to_black,
|
32 |
+
inputs=["image",
|
33 |
+
gr.Number(label="longitude"),
|
34 |
+
gr.Number(label="latitude"),
|
35 |
+
gr.Slider(256, 512,label='Area')],
|
36 |
+
outputs=outputs,
|
37 |
+
title=title,
|
38 |
+
description=description,
|
39 |
+
examples=[["gradio/未命名1688700109.png",70.1,40.0,256]])
|
40 |
+
interface.launch()
|