File size: 4,494 Bytes
124ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) Meta Platforms, Inc. and affiliates.

import copy

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch


def likelihood_overlay(
    prob, map_viz=None, p_rgb=0.2, p_alpha=1 / 15, thresh=None, cmap="jet"
):
    prob = prob / prob.max()
    cmap = plt.get_cmap(cmap)
    rgb = cmap(prob**p_rgb)
    alpha = prob[..., None] ** p_alpha
    if thresh is not None:
        alpha[prob <= thresh] = 0
    if map_viz is not None:
        faded = map_viz + (1 - map_viz) * 0.5
        rgb = rgb[..., :3] * alpha + faded * (1 - alpha)
        rgb = np.clip(rgb, 0, 1)
    else:
        rgb[..., -1] = alpha.squeeze(-1)
    return rgb


def heatmap2rgb(scores, mask=None, clip_min=0.05, alpha=0.8, cmap="jet"):
    min_, max_ = np.quantile(scores, [clip_min, 1])
    scores = scores.clip(min=min_)
    rgb = plt.get_cmap(cmap)((scores - min_) / (max_ - min_))
    if mask is not None:
        if alpha == 0:
            rgb[mask] = np.nan
        else:
            rgb[..., -1] = 1 - (1 - 1.0 * mask) * (1 - alpha)
    return rgb


def plot_pose(axs, xy, yaw=None, s=1 / 35, c="r", a=1, w=0.015, dot=True, zorder=10):
    if yaw is not None:
        yaw = np.deg2rad(yaw)
        uv = np.array([np.sin(yaw), -np.cos(yaw)])
    xy = np.array(xy) + 0.5
    if not isinstance(axs, list):
        axs = [axs]
    for ax in axs:
        if isinstance(ax, int):
            ax = plt.gcf().axes[ax]
        if dot:
            ax.scatter(*xy, c=c, s=70, zorder=zorder, linewidths=0, alpha=a)
        if yaw is not None:
            ax.quiver(
                *xy,
                *uv,
                scale=s,
                scale_units="xy",
                angles="xy",
                color=c,
                zorder=zorder,
                alpha=a,
                width=w,
            )


def plot_dense_rotations(
    ax, prob, thresh=0.01, skip=10, s=1 / 15, k=3, c="k", w=None, **kwargs
):
    t = torch.argmax(prob, -1)
    yaws = t.numpy() / prob.shape[-1] * 360
    prob = prob.max(-1).values / prob.max()
    mask = prob > thresh
    masked = prob.masked_fill(~mask, 0)
    max_ = torch.nn.functional.max_pool2d(
        masked.float()[None, None], k, stride=1, padding=k // 2
    )
    mask = (max_[0, 0] == masked.float()) & mask
    indices = np.where(mask.numpy() > 0)
    plot_pose(
        ax,
        indices[::-1],
        yaws[indices],
        s=s,
        c=c,
        dot=False,
        zorder=0.1,
        w=w,
        **kwargs,
    )


def copy_image(im, ax):
    prop = im.properties()
    prop.pop("children")
    prop.pop("size")
    prop.pop("tightbbox")
    prop.pop("transformed_clip_path_and_affine")
    prop.pop("window_extent")
    prop.pop("figure")
    prop.pop("transform")
    return ax.imshow(im.get_array(), **prop)


def add_circle_inset(
    ax,
    center,
    corner=None,
    radius_px=10,
    inset_size=0.4,
    inset_offset=0.005,
    color="red",
):
    data_t_axes = ax.transAxes + ax.transData.inverted()
    if corner is None:
        center_axes = np.array(data_t_axes.inverted().transform(center))
        corner = 1 - np.round(center_axes).astype(int)
    corner = np.array(corner)
    bottom_left = corner * (1 - inset_size - inset_offset) + (1 - corner) * inset_offset
    axins = ax.inset_axes([*bottom_left, inset_size, inset_size])
    if ax.yaxis_inverted():
        axins.invert_yaxis()
    axins.set_axis_off()

    c = mpl.patches.Circle(center, radius_px, fill=False, color=color)
    c1 = mpl.patches.Circle(center, radius_px, fill=False, color=color)
    # ax.add_patch(c)
    ax.add_patch(c1)
    # ax.add_patch(c.frozen())
    axins.add_patch(c)

    radius_inset = radius_px + 1
    axins.set_xlim([center[0] - radius_inset, center[0] + radius_inset])
    ylim = center[1] - radius_inset, center[1] + radius_inset
    if axins.yaxis_inverted():
        ylim = ylim[::-1]
    axins.set_ylim(ylim)

    for im in ax.images:
        im2 = copy_image(im, axins)
        im2.set_clip_path(c)
    return axins


def plot_bev(bev, uv, yaw, ax=None, zorder=10, **kwargs):
    if ax is None:
        ax = plt.gca()
    h, w = bev.shape[:2]
    tfm = mpl.transforms.Affine2D().translate(-w / 2, -h)
    tfm = tfm.rotate_deg(yaw).translate(*uv + 0.5)
    tfm += plt.gca().transData
    ax.imshow(bev, transform=tfm, zorder=zorder, **kwargs)
    ax.plot(
        [0, w - 1, w / 2, 0],
        [0, 0, h - 0.5, 0],
        transform=tfm,
        c="k",
        lw=1,
        zorder=zorder + 1,
    )