File size: 8,969 Bytes
124ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
from torch.utils.data import Dataset
import os
import cv2
# @Time : 2023-02-13 22:56
# @Author : Wang Zhen
# @Email : [email protected]
# @File : SatelliteTool.py
# @Project : TGRS_seqmatch_2023_1
import numpy as np
import random
from utils.geo import BoundaryBox, Projection
from osm.tiling import TileManager,MapTileManager
from pathlib import Path
from torchvision import transforms
from tqdm import tqdm
import time
import math
import random
from geopy import Point, distance
from osm.viz import Colormap, plot_nodes

def generate_random_coordinate(latitude, longitude, dis):
    # 生成一个随机方向角
    random_angle = random.uniform(0, 360)
    # print("random_angle",random_angle)
    # 计算目标点的经纬度
    start_point = Point(latitude, longitude)
    destination = distance.distance(kilometers=dis/1000).destination(start_point, random_angle)

    return destination.latitude, destination.longitude

def rotate_corp(src,angle):
    # 原图的高、宽 以及通道数
    rows, cols, channel = src.shape

    # 绕图像的中心旋转
    # 参数:旋转中心 旋转度数 scale
    M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)
    # rows, cols=700,700
    # 自适应图片边框大小
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])
    new_w = rows * sin + cols * cos
    new_h = rows * cos + cols * sin
    M[0, 2] += (new_w - cols) * 0.5
    M[1, 2] += (new_h - rows) * 0.5
    w = int(np.round(new_w))
    h = int(np.round(new_h))
    rotated = cv2.warpAffine(src, M, (w, h))

    # rotated = cv2.warpAffine(src, M, (cols, rows))

    c=int(w / 2)
    w=int(rows*math.sqrt(2)/4)
    rotated2=rotated[c-w:c+w,c-w:c+w,:]
    return rotated2

class SatelliteGeoTools:
    """
    用于读取卫星图tfw文件,执行 像素坐标-Mercator-GPS坐标 的转化
    """
    def __init__(self, tfw_path):
        self.SatelliteParameter=self.Parsetfw(tfw_path)
    def Parsetfw(self, tfw_path):
        info = []
        f = open(tfw_path)
        for _ in range(6):
            line = f.readline()
            line = line.strip('\n')
            info.append(float(line))
        f.close()
        return info
    def Pix2Geo(self, x, y):
        A, D, B, E, C, F = self.SatelliteParameter
        x1 = A * x + B * y + C
        y1 = D * x + E * y + F
        # print(x1,y1)
        s_long, s_lat = self.MercatorTolonlat(x1, y1)
        return s_long, s_lat

    def Geo2Pix(self, lon, lat):
        """
        https://baike.baidu.com/item/TFW%E6%A0%BC%E5%BC%8F/6273151?fr=aladdin
        x'=Ax+By+C
        y'=Dx+Ey+F
        :return:
        """
        x1, y1 = self.LonlatToMercator(lon, lat)
        A, D, B, E, C, F = self.SatelliteParameter
        M = np.array([[A, B, C],
                      [D, E, F],
                      [0, 0, 1]])
        M_INV = np.linalg.inv(M)
        XY = np.matmul(M_INV, np.array([x1, y1, 1]).T)
        return int(XY[0]), int(XY[1])
    def MercatorTolonlat(self,mx,my):
        x = mx/20037508.3427892*180
        y = my/20037508.3427892*180
        # y= 180/math.pi*(2*math.atan(math.exp(y*math.pi/180))-math.pi/2)
        y = 180.0 / np.pi * (2.0 * np.arctan(np.exp(y * np.pi / 180.0)) - np.pi / 2.0)
        return x,y
    def LonlatToMercator(self,lon, lat):
        x = lon * 20037508.342789 / 180
        y = np.log(np.tan((90 + lat) * np.pi / 360)) / (np.pi / 180)
        y = y * 20037508.34789 / 180
        return x, y

def geodistance(lng1, lat1, lng2, lat2):
    lng1, lat1, lng2, lat2 = map(np.radians, [lng1, lat1, lng2, lat2])
    dlon = lng2 - lng1
    dlat = lat2 - lat1
    a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2) ** 2
    distance = 2 * np.arcsin(np.sqrt(a)) * 6371 * 1000  # 地球平均半径,6371km
    return distance

class PreparaDataset:
    def __init__(
        self,
        root: Path,
        city:str,
        patch_size:int,
        tile_size_meters:float
    ):
        super().__init__()

        # self.root = root

        # city = 'Manhattan'
        # root = '/root/DATASET/CrossModel/'
        imagepath = root/city/ '{}.tif'.format(city)
        tfwpath = root/city/'{}.tfw'.format(city)

        self.osmpath = root/city/'{}.osm'.format(city)

        self.TileManager=MapTileManager(self.osmpath)
        image = cv2.imread(str(imagepath))
        self.image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

        self.ST = SatelliteGeoTools(str(tfwpath))

        self.patch_size=patch_size
        self.tile_size_meters=tile_size_meters



    def get_osm(self,prior_latlon,uav_latlon):
        latlon = np.array(prior_latlon)
        proj = Projection(*latlon)
        center = proj.project(latlon)

        uav_latlon=np.array(uav_latlon)

        XY=proj.project(uav_latlon)
        # tile_size_meters = 128
        bbox = BoundaryBox(center, center) + self.tile_size_meters
        # bbox= BoundaryBox(center, center)
        # Query OpenStreetMap for this area
        self.pixel_per_meter = 1
        start_time = time.time()
        canvas = self.TileManager.from_bbox(proj, bbox, self.pixel_per_meter)
        end_time = time.time()
        execution_time = end_time - start_time
        # print("方法执行时间:", execution_time, "秒")
        # canvas = tiler.query(bbox)
        XY=[XY[0]+self.tile_size_meters,-XY[1]+self.tile_size_meters]
        return canvas,XY
    def random_corp(self):

        # 根据随机裁剪尺寸计算出裁剪区域的左上角坐标
        x = random.randint(1000, self.image.shape[1] - self.patch_size-1000)
        y = random.randint(1000, self.image.shape[0] - self.patch_size-1000)
        x1 = x + self.patch_size
        y1 = y + self.patch_size
        return x,x1,y,y1

    def generate(self):
        x,x1,y,y1 = self.random_corp()
        uav_center_x,uav_center_y=int((x+x1)//2),int((y+y1)//2)
        uav_center_long,uav_center_lat=self.ST.Pix2Geo(uav_center_x,uav_center_y)
        # print(uav_center_long,uav_center_lat)
        self.image_patch = self.image[y:y1, x:x1]

        map_center_lat, map_center_long = generate_random_coordinate(uav_center_lat, uav_center_long, self.tile_size_meters)
        map,XY=self.get_osm([map_center_lat,map_center_long],[uav_center_lat, uav_center_long])


        yaw=np.random.random()*360
        self.image_patch=rotate_corp(self.image_patch,yaw)
        # return self.image_patch,self.osm_patch
        # XY=[X+self.tile_size_meters
        return {
            'uav_image':self.image_patch,
            'uav_long_lat':[uav_center_long,uav_center_lat],
            'map_long_lat': [map_center_long,map_center_lat],
            'tile_size_meters': map.raster.shape[1],
            'pixel_per_meter':self.pixel_per_meter,
            'yaw':yaw,
            'map':map.raster,
            "uv":XY
        }
if __name__ == '__main__':

    import argparse

    parser = argparse.ArgumentParser(description='manual to this script')
    parser.add_argument('--city', type=str, default=None,required=True)
    parser.add_argument('--num', type=int, default=10000)
    args = parser.parse_args()


    root=Path('/root/DATASET/OrienterNet/UavMap/')
    city=args.city
    dataset = PreparaDataset(
        root=root,
        city=city,
        patch_size=512,
        tile_size_meters=128,
    )

    uav_path=root/city/'uav'
    if not uav_path.exists():
        uav_path.mkdir(parents=True)

    map_path = root / city / 'map'
    if not map_path.exists():
        map_path.mkdir(parents=True)

    map_vis_path = root / city / 'map_vis'
    if not map_vis_path.exists():
        map_vis_path.mkdir(parents=True)

    info_path = root / city / 'info.csv'

    # num=1000
    num = args.num
    info=[['id','uav_name','map_name','uav_long','uav_lat','map_long','map_lat','tile_size_meters','pixel_per_meter','u','v','yaw']]
    # info =[]
    for i in tqdm(range(num)):
        data=dataset.generate()
        # print(str(uav_path/"{:05d}.jpg".format(i)))

        cv2.imwrite(str(uav_path/"{:05d}.jpg".format(i)),cv2.cvtColor(data['uav_image'],cv2.COLOR_RGB2BGR))

        np.save(str(map_path/"{:05d}.npy".format(i)),data['map'])

        map_viz, label = Colormap.apply(data['map'])
        map_viz = map_viz * 255
        map_viz = map_viz.astype(np.uint8)
        cv2.imwrite(str(map_vis_path / "{:05d}.jpg".format(i)), cv2.cvtColor(map_viz, cv2.COLOR_RGB2BGR))


        uav_center_long, uav_center_lat=data['uav_long_lat']
        map_center_long, map_center_lat = data['map_long_lat']
        info.append([
             i,
             "{:05d}.jpg".format(i),
             "{:05d}.npy".format(i),
             uav_center_long,
             uav_center_lat,
             map_center_long,
             map_center_lat,
             data["tile_size_meters"],
             data["pixel_per_meter"],
             data['uv'][0],
             data['uv'][1],
             data['yaw']
             ])
        # print(info)
        np.savetxt(info_path,info,delimiter=',',fmt="%s")