File size: 3,604 Bytes
124ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
from torch.utils.data import Dataset
import os
import cv2
# @Time : 2023-02-13 22:56
# @Author : Wang Zhen
# @Email : [email protected]
# @File : SatelliteTool.py
# @Project : TGRS_seqmatch_2023_1
import numpy as np
import random
from utils.geo import BoundaryBox, Projection
from osm.tiling import TileManager,MapTileManager
from pathlib import Path
from torchvision import transforms
from torch.utils.data import DataLoader

class UavMapPair(Dataset):
    def __init__(
        self,
        root: Path,
        city:str,
            training:bool,
            transform
    ):
        super().__init__()

        # self.root = root

        # city = 'Manhattan'
        # root = '/root/DATASET/CrossModel/'
        # root=Path(root)
        self.uav_image_path = root/city/'uav'
        self.map_path = root/city/'map'
        self.map_vis = root / city / 'map_vis'
        info_path = root / city / 'info.csv'

        self.info = np.loadtxt(str(info_path), dtype=str, delimiter=",", skiprows=1)

        self.transform=transform
        self.training=training

    def random_center_crop(self,image):
        height, width = image.shape[:2]

        # 随机生成剪裁尺寸
        crop_size = random.randint(min(height, width) // 2, min(height, width))

        # 计算剪裁的起始坐标
        start_x = (width - crop_size) // 2
        start_y = (height - crop_size) // 2

        # 进行剪裁
        cropped_image = image[start_y:start_y + crop_size, start_x:start_x + crop_size]

        return cropped_image
    def __getitem__(self, index: int):
        id, uav_name, map_name, \
            uav_long, uav_lat, \
            map_long, map_lat, \
            tile_size_meters, pixel_per_meter, \
            u, v, yaw,dis=self.info[index]


        uav_image=cv2.imread(str(self.uav_image_path/uav_name))
        if self.training:
            uav_image =self.random_center_crop(uav_image)
        uav_image=cv2.cvtColor(uav_image,cv2.COLOR_BGR2RGB)
        if self.transform:
            uav_image=self.transform(uav_image)
        map=np.load(str(self.map_path/map_name))

        return {
            'map':torch.from_numpy(np.ascontiguousarray(map)).long(),
            'image':torch.tensor(uav_image),
            'roll_pitch_yaw':torch.tensor((0, 0, float(yaw))).float(),
            'pixels_per_meter':torch.tensor(float(pixel_per_meter)).float(),
            "uv":torch.tensor([float(u), float(v)]).float(),
        }
    def __len__(self):
        return len(self.info)
if __name__ == '__main__':

    root=Path('/root/DATASET/OrienterNet/UavMap/')
    city='NewYork'

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize(256),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    dataset=UavMapPair(
        root=root,
        city=city,
        transform=transform
    )
    datasetloder = DataLoader(dataset, batch_size=3)
    for batch, i in enumerate(datasetloder):
        pass
        # 将PyTorch张量转换为PIL图像
        # pil_image = Image.fromarray(i['uav_image'][0].permute(1, 2, 0).byte().numpy())

        # 显示图像
        # 将PyTorch张量转换为NumPy数组
        # numpy_array = i['uav_image'][0].numpy()
        #
        # # 显示图像
        # plt.imshow(numpy_array.transpose(1, 2, 0))
        # plt.axis('off')
        # plt.show()
        #
        # map_viz, label = Colormap.apply(i['map'][0])
        # map_viz = map_viz * 255
        # map_viz = map_viz.astype(np.uint8)
        # plot_images([map_viz], titles=["OpenStreetMap raster"])