Spaces:
Runtime error
Runtime error
guardrails-genie
/
guardrails_genie
/guardrails
/entity_recognition
/regex_entity_recognition_guardrail.py
| import re | |
| from typing import ClassVar, Dict, List, Optional | |
| import weave | |
| from pydantic import BaseModel | |
| from ...regex_model import RegexModel | |
| from ..base import Guardrail | |
| class RegexEntityRecognitionResponse(BaseModel): | |
| contains_entities: bool | |
| detected_entities: Dict[str, list[str]] | |
| explanation: str | |
| anonymized_text: Optional[str] = None | |
| def safe(self) -> bool: | |
| return not self.contains_entities | |
| class RegexEntityRecognitionSimpleResponse(BaseModel): | |
| contains_entities: bool | |
| explanation: str | |
| anonymized_text: Optional[str] = None | |
| def safe(self) -> bool: | |
| return not self.contains_entities | |
| class RegexEntityRecognitionGuardrail(Guardrail): | |
| """ | |
| A guardrail class for recognizing and optionally anonymizing entities in text using regular expressions. | |
| This class extends the Guardrail base class and utilizes a RegexModel to detect entities in the input text | |
| based on predefined or custom regex patterns. It provides functionality to check for entities, anonymize | |
| detected entities, and return detailed information about the detected entities. | |
| !!! example "Using RegexEntityRecognitionGuardrail" | |
| ```python | |
| from guardrails_genie.guardrails.entity_recognition import RegexEntityRecognitionGuardrail | |
| # Initialize with default PII patterns | |
| guardrail = RegexEntityRecognitionGuardrail(should_anonymize=True) | |
| # Or with custom patterns | |
| custom_patterns = { | |
| "employee_id": r"EMP\d{6}", | |
| "project_code": r"PRJ-[A-Z]{2}-\d{4}" | |
| } | |
| guardrail = RegexEntityRecognitionGuardrail(patterns=custom_patterns, should_anonymize=True) | |
| ``` | |
| Attributes: | |
| regex_model (RegexModel): An instance of RegexModel used for entity recognition. | |
| patterns (Dict[str, str]): A dictionary of regex patterns for entity recognition. | |
| should_anonymize (bool): A flag indicating whether detected entities should be anonymized. | |
| DEFAULT_PATTERNS (ClassVar[Dict[str, str]]): A dictionary of default regex patterns for common entities. | |
| Args: | |
| use_defaults (bool): If True, use default patterns. If False, use custom patterns. | |
| should_anonymize (bool): If True, anonymize detected entities. | |
| show_available_entities (bool): If True, print available entity types. | |
| """ | |
| regex_model: RegexModel | |
| patterns: Dict[str, str] = {} | |
| should_anonymize: bool = False | |
| DEFAULT_PATTERNS: ClassVar[Dict[str, str]] = { | |
| "EMAIL": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b", | |
| "TELEPHONENUM": r"\b(\+\d{1,3}[-.]?)?\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}\b", | |
| "SOCIALNUM": r"\b\d{3}[-]?\d{2}[-]?\d{4}\b", | |
| "CREDITCARDNUMBER": r"\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b", | |
| "DATEOFBIRTH": r"\b(0[1-9]|1[0-2])[-/](0[1-9]|[12]\d|3[01])[-/](19|20)\d{2}\b", | |
| "DRIVERLICENSENUM": r"[A-Z]\d{7}", # Example pattern, adjust for your needs | |
| "ACCOUNTNUM": r"\b\d{10,12}\b", # Example pattern for bank accounts | |
| "ZIPCODE": r"\b\d{5}(?:-\d{4})?\b", | |
| "GIVENNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for first names | |
| "SURNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for last names | |
| "CITY": r"\b[A-Z][a-z]+(?:[\s-][A-Z][a-z]+)*\b", | |
| "STREET": r"\b\d+\s+[A-Z][a-z]+\s+(?:Street|St|Avenue|Ave|Road|Rd|Boulevard|Blvd|Lane|Ln|Drive|Dr)\b", | |
| "IDCARDNUM": r"[A-Z]\d{7,8}", # Generic pattern for ID cards | |
| "USERNAME": r"@[A-Za-z]\w{3,}", # Basic username pattern | |
| "PASSWORD": r"[A-Za-z0-9@#$%^&+=]{8,}", # Basic password pattern | |
| "TAXNUM": r"\b\d{2}[-]\d{7}\b", # Example tax number pattern | |
| "BUILDINGNUM": r"\b\d+[A-Za-z]?\b", # Basic building number pattern | |
| } | |
| def __init__( | |
| self, | |
| use_defaults: bool = True, | |
| should_anonymize: bool = False, | |
| show_available_entities: bool = False, | |
| **kwargs, | |
| ): | |
| patterns = {} | |
| if use_defaults: | |
| patterns = self.DEFAULT_PATTERNS.copy() | |
| if kwargs.get("patterns"): | |
| patterns.update(kwargs["patterns"]) | |
| if show_available_entities: | |
| self._print_available_entities(patterns.keys()) | |
| # Create the RegexModel instance | |
| regex_model = RegexModel(patterns=patterns) | |
| # Initialize the base class with both the regex_model and patterns | |
| super().__init__( | |
| regex_model=regex_model, | |
| patterns=patterns, | |
| should_anonymize=should_anonymize, | |
| ) | |
| def text_to_pattern(self, text: str) -> str: | |
| """ | |
| Convert input text into a regex pattern that matches the exact text. | |
| """ | |
| # Escape special regex characters in the text | |
| escaped_text = re.escape(text) | |
| # Create a pattern that matches the exact text, case-insensitive | |
| return rf"\b{escaped_text}\b" | |
| def _print_available_entities(self, entities: List[str]): | |
| """Print available entities""" | |
| print("\nAvailable entity types:") | |
| print("=" * 25) | |
| for entity in entities: | |
| print(f"- {entity}") | |
| print("=" * 25 + "\n") | |
| def guard( | |
| self, | |
| prompt: str, | |
| custom_terms: Optional[list[str]] = None, | |
| return_detected_types: bool = True, | |
| aggregate_redaction: bool = True, | |
| **kwargs, | |
| ) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse: | |
| """ | |
| Analyzes the input prompt to detect entities based on predefined or custom regex patterns. | |
| This function checks the provided text (prompt) for entities using regex patterns. It can | |
| utilize either default patterns or custom terms provided by the user. If custom terms are | |
| specified, they are converted into regex patterns, and only these are used for entity detection. | |
| The function returns detailed information about detected entities and can optionally anonymize | |
| the detected entities in the text. | |
| Args: | |
| prompt (str): The input text to be analyzed for entity detection. | |
| custom_terms (Optional[list[str]]): A list of custom terms to be converted into regex patterns. | |
| If provided, only these terms will be checked, ignoring default patterns. | |
| return_detected_types (bool): If True, the function returns detailed information about the | |
| types of entities detected in the text. | |
| aggregate_redaction (bool): Determines the anonymization strategy. If True, all detected | |
| entities are replaced with a generic "[redacted]" label. If False, each entity type is | |
| replaced with its specific label (e.g., "[ENTITY_TYPE]"). | |
| Returns: | |
| RegexEntityRecognitionResponse or RegexEntityRecognitionSimpleResponse: An object containing | |
| the results of the entity detection, including whether entities were found, the types and | |
| counts of detected entities, an explanation of the detection process, and optionally, the | |
| anonymized text. | |
| """ | |
| if custom_terms: | |
| # Create a temporary RegexModel with only the custom patterns | |
| temp_patterns = {term: self.text_to_pattern(term) for term in custom_terms} | |
| temp_model = RegexModel(patterns=temp_patterns) | |
| result = temp_model.check(prompt) | |
| else: | |
| # Use the original regex_model if no custom terms provided | |
| result = self.regex_model.check(prompt) | |
| # Create detailed explanation | |
| explanation_parts = [] | |
| if result.matched_patterns: | |
| explanation_parts.append("Found the following entities in the text:") | |
| for entity_type, matches in result.matched_patterns.items(): | |
| explanation_parts.append(f"- {entity_type}: {len(matches)} instance(s)") | |
| else: | |
| explanation_parts.append("No entities detected in the text.") | |
| if result.failed_patterns: | |
| explanation_parts.append("\nChecked but did not find these entity types:") | |
| for pattern in result.failed_patterns: | |
| explanation_parts.append(f"- {pattern}") | |
| # Updated anonymization logic | |
| anonymized_text = None | |
| if getattr(self, "should_anonymize", False) and result.matched_patterns: | |
| anonymized_text = prompt | |
| for entity_type, matches in result.matched_patterns.items(): | |
| for match in matches: | |
| replacement = ( | |
| "[redacted]" | |
| if aggregate_redaction | |
| else f"[{entity_type.upper()}]" | |
| ) | |
| anonymized_text = anonymized_text.replace(match, replacement) | |
| if return_detected_types: | |
| return RegexEntityRecognitionResponse( | |
| contains_entities=not result.passed, | |
| detected_entities=result.matched_patterns, | |
| explanation="\n".join(explanation_parts), | |
| anonymized_text=anonymized_text, | |
| ) | |
| else: | |
| return RegexEntityRecognitionSimpleResponse( | |
| contains_entities=not result.passed, | |
| explanation="\n".join(explanation_parts), | |
| anonymized_text=anonymized_text, | |
| ) | |
| def predict( | |
| self, | |
| prompt: str, | |
| return_detected_types: bool = True, | |
| aggregate_redaction: bool = True, | |
| **kwargs, | |
| ) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse: | |
| return self.guard( | |
| prompt, | |
| return_detected_types=return_detected_types, | |
| aggregate_redaction=aggregate_redaction, | |
| **kwargs, | |
| ) | |