File size: 10,401 Bytes
63f899c 43a4f7e 63f899c 446a654 5b8134f 43a4f7e 59d9186 63f899c 43a4f7e bd786ec 43a4f7e ec5560f 43a4f7e 446a654 43a4f7e 446a654 43a4f7e 446a654 dcda854 446a654 43a4f7e 446a654 43a4f7e 446a654 62e5071 446a654 62e5071 446a654 dcda854 446a654 dcda854 e7e9e9b 43a4f7e e7e9e9b 43a4f7e e7e9e9b dcda854 446a654 5b8134f 43a4f7e 5b8134f 43a4f7e 446a654 43a4f7e dcda854 43a4f7e dcda854 43a4f7e dcda854 43a4f7e dcda854 43a4f7e dcda854 43a4f7e dcda854 446a654 dcda854 43a4f7e dcda854 43a4f7e dcda854 f634467 43a4f7e f634467 43a4f7e f634467 43a4f7e 446a654 59d9186 63f899c 43a4f7e 63f899c 43a4f7e 63f899c dcda854 43a4f7e 446a654 43a4f7e 446a654 43a4f7e 62e5071 43a4f7e 446a654 5b8134f 686542a dcda854 5b8134f 446a654 43a4f7e a6075c0 43a4f7e a6075c0 bd786ec a6075c0 446a654 43a4f7e dcda854 446a654 43a4f7e 446a654 43a4f7e dcda854 446a654 43a4f7e 446a654 43a4f7e 446a654 f634467 43a4f7e f634467 43a4f7e dcda854 43a4f7e 446a654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import shutil
import uuid
import argparse
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
import ffmpeg
# Set working directory
os.chdir(os.path.dirname(os.path.abspath(__file__)))
from scripts.inference import inference_process
# Constants
AUDIO_MAX_DURATION = 4000
is_shared_ui = "fffiloni/tts-hallo-talking-portrait" in os.environ.get('SPACE_ID', '')
hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")
# Utility Functions
def is_mp3(file_path):
try:
MP3(file_path)
return True
except Exception:
return False
def convert_mp3_to_wav(mp3_file_path, wav_file_path):
audio = AudioSegment.from_mp3(mp3_file_path)
audio.export(wav_file_path, format="wav")
return wav_file_path
def trim_audio(file_path, output_path, max_duration):
audio = AudioSegment.from_wav(file_path)
if len(audio) > max_duration:
audio = audio[:max_duration]
audio.export(output_path, format="wav")
return output_path
def add_silence_to_wav(wav_file_path, duration_s=1):
audio = AudioSegment.from_wav(wav_file_path)
silence = AudioSegment.silent(duration=duration_s * 1000)
(audio + silence).export(wav_file_path, format="wav")
return wav_file_path
def check_mp3(file_path):
if is_mp3(file_path):
unique_id = uuid.uuid4()
wav_file_path = f"{os.path.splitext(file_path)[0]}-{unique_id}.wav"
converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
print(f"File converted to {wav_file_path}")
return converted_audio, gr.update(value=converted_audio, visible=True)
else:
print("The file is not an MP3 file.")
return file_path, gr.update(value=file_path, visible=True)
def check_and_convert_webp_to_png(input_path, output_path):
try:
with Image.open(input_path) as img:
if img.format == 'WEBP':
img.save(output_path, 'PNG')
print(f"Converted {input_path} to {output_path}")
return output_path
else:
print(f"The file {input_path} is not in WebP format.")
return input_path
except IOError:
print(f"Cannot open {input_path}. The file might not exist or is not an image.")
def convert_user_uploaded_webp(input_path):
unique_id = uuid.uuid4()
output_file = f"converted_to_png_portrait-{unique_id}.png"
ready_png = check_and_convert_webp_to_png(input_path, output_file)
print(f"PORTRAIT PNG FILE: {ready_png}")
return ready_png
def clear_audio_elms():
return gr.update(value=None, visible=False)
def change_video_codec(input_file, output_file, codec='libx264', audio_codec='aac'):
try:
ffmpeg.input(input_file).output(output_file, vcodec=codec, acodec=audio_codec).run(overwrite_output=True)
print(f'Successfully changed codec of {input_file} and saved as {output_file}')
except ffmpeg.Error as e:
print(f'Error occurred: {e.stderr.decode()}')
# Gradio APIs
def generate_portrait(prompt_image):
if not prompt_image:
raise gr.Error("Can't generate a portrait without a prompt!")
try:
client = Client("ByteDance/SDXL-Lightning")
except Exception:
raise gr.Error("ByteDance/SDXL-Lightning space's API might not be ready, please wait, or upload an image instead.")
result = client.predict(prompt=prompt_image, ckpt="4-Step", api_name="/generate_image")
return convert_user_uploaded_webp(result)
def generate_voice_with_parler(prompt_audio, voice_description):
if not prompt_audio:
raise gr.Error("Can't generate a voice without text to synthesize!")
if not voice_description:
gr.Info("For better control, you may want to provide a voice character description next time.", duration=10, visible=True)
try:
client = Client("parler-tts/parler_tts_mini")
except Exception:
raise gr.Error("parler-tts/parler_tts_mini space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(text=prompt_audio, description=voice_description, api_name="/gen_tts")
return result, gr.update(value=result, visible=True)
def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
try:
client = Client("collabora/WhisperSpeech")
except Exception:
raise gr.Error("collabora/WhisperSpeech space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(multilingual_text=prompt_audio_whisperspeech, speaker_audio=handle_file(audio_to_clone), speaker_url="", cps=14, api_name="/whisper_speech_demo")
return result, gr.update(value=result, visible=True)
def get_maskGCT_TTS(prompt_audio_maskGCT, audio_to_clone):
try:
client = Client("amphion/maskgct")
except Exception:
raise gr.Error("amphion/maskgct space's API might not be ready, please wait, or upload an audio instead.")
result = client.predict(prompt_wav=handle_file(audio_to_clone), target_text=prompt_audio_maskGCT, target_len=-1, n_timesteps=25, api_name="/predict")
return result, gr.update(value=result, visible=True)
# Talking Portrait Generation
def run_hallo(source_image, driving_audio, progress=gr.Progress(track_tqdm=True)):
unique_id = uuid.uuid4()
args = argparse.Namespace(
config='configs/inference/default.yaml',
source_image=source_image,
driving_audio=driving_audio,
output=f'output-{unique_id}.mp4',
pose_weight=1.0,
face_weight=1.0,
lip_weight=1.0,
face_expand_ratio=1.2,
checkpoint=None
)
inference_process(args)
return f'output-{unique_id}.mp4'
def generate_talking_portrait(portrait, voice, progress=gr.Progress(track_tqdm=True)):
if not portrait:
raise gr.Error("Please provide a portrait to animate.")
if not voice:
raise gr.Error("Please provide audio (4 seconds max).")
if is_shared_ui:
unique_id = uuid.uuid4()
trimmed_output_file = f"-{unique_id}.wav"
voice = trim_audio(voice, trimmed_output_file, AUDIO_MAX_DURATION)
ready_audio = add_silence_to_wav(voice)
print(f"1 second of silence added to {voice}")
talking_portrait_vid = run_hallo(portrait, ready_audio)
final_output_file = f"converted_{talking_portrait_vid}"
change_video_codec(talking_portrait_vid, final_output_file)
return final_output_file
# Gradio Interface
css = '''
/* Your CSS here */
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# TTS x Hallo Talking Portrait Generator")
with gr.Row(elem_id="column-names"):
gr.Markdown("## 1. Load Portrait")
gr.Markdown("## 2. Load Voice")
gr.Markdown("## 3. Result")
with gr.Group(elem_id="main-group"):
with gr.Row():
with gr.Column():
portrait = gr.Image(sources=["upload"], type="filepath", format="png", elem_id="image-block")
prompt_image = gr.Textbox(label="Generate image", lines=2, max_lines=2)
gen_image_btn = gr.Button("Generate portrait (optional)")
with gr.Column(elem_id="audio-column"):
voice = gr.Audio(type="filepath", elem_id="audio-block")
preprocess_audio_file = gr.File(visible=False)
with gr.Tab("Parler TTS", elem_id="parler-tab"):
prompt_audio = gr.Textbox(label="Text to synthesize", lines=3, max_lines=3, elem_id="text-synth")
voice_description = gr.Textbox(label="Voice description", lines=3, max_lines=3, elem_id="voice-desc")
gen_voice_btn = gr.Button("Generate voice (optional)")
with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
prompt_audio_whisperspeech = gr.Textbox(label="Text to synthesize", lines=2, max_lines=2, elem_id="text-synth-wsp")
audio_to_clone = gr.Audio(label="Voice to clone", type="filepath", elem_id="audio-clone-elm")
gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Tab("MaskGCT TTS", elem_id="maskGCT-tab"):
prompt_audio_maskGCT = gr.Textbox(label="Text to synthesize", lines=2, max_lines=2, elem_id="text-synth-maskGCT")
audio_to_clone_maskGCT = gr.Audio(label="Voice to clone", type="filepath", elem_id="audio-clone-elm-maskGCT")
gen_maskGCT_voice_btn = gr.Button("Generate voice clone (optional)")
with gr.Column(elem_id="result-column"):
result = gr.Video(elem_id="video-block")
submit_btn = gr.Button("Go talking Portrait !", elem_id="main-submit")
with gr.Row(elem_id="pro-tips"):
gr.Markdown("# Hallo Pro Tips:")
gr.Markdown("# TTS Pro Tips:")
portrait.upload(convert_user_uploaded_webp, inputs=[portrait], outputs=[portrait], queue=False, show_api=False)
voice.upload(check_mp3, inputs=[voice], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
voice.clear(clear_audio_elms, inputs=None, outputs=[preprocess_audio_file], queue=False, show_api=False)
gen_image_btn.click(generate_portrait, inputs=[prompt_image], outputs=[portrait], queue=False, show_api=False)
gen_voice_btn.click(generate_voice_with_parler, inputs=[prompt_audio, voice_description], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
gen_wsp_voice_btn.click(get_whisperspeech, inputs=[prompt_audio_whisperspeech, audio_to_clone], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
gen_maskGCT_voice_btn.click(get_maskGCT_TTS, inputs=[prompt_audio_maskGCT, audio_to_clone_maskGCT], outputs=[voice, preprocess_audio_file], queue=False, show_api=False)
submit_btn.click(generate_talking_portrait, inputs=[portrait, voice], outputs=[result], show_api=False)
demo.queue(max_size=2).launch(show_error=True, show_api=False) |