Spaces:
Sleeping
Sleeping
File size: 6,301 Bytes
19fe404 f62c8b9 e262715 f62c8b9 19fe404 f62c8b9 19fe404 e262715 19fe404 f62c8b9 19fe404 f62c8b9 19fe404 c2a6cd2 19fe404 e262715 19fe404 e262715 19fe404 e262715 f62c8b9 e262715 19fe404 e262715 f62c8b9 19fe404 e262715 f62c8b9 19fe404 e262715 19fe404 e262715 19fe404 e262715 19fe404 e262715 f62c8b9 19fe404 e262715 19fe404 e262715 19fe404 e262715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import base64
import gc
import hashlib
import io
import os
import tempfile
from io import BytesIO
import gradio as gr
import torch
from fastapi import FastAPI
from PIL import Image
# Function to encode a file to Base64
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
# Encode the data to Base64
file_base64 = base64.b64encode(file.read())
return file_base64
def update_edition_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/easyanimate/update_edition")
def _update_edition_api(
datas: dict,
):
edition = datas.get('edition', 'v2')
try:
controller.update_edition(
edition
)
comment = "Success"
except Exception as e:
torch.cuda.empty_cache()
comment = f"Error. error information is {str(e)}"
return {"message": comment}
def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/easyanimate/update_diffusion_transformer")
def _update_diffusion_transformer_api(
datas: dict,
):
diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none')
try:
controller.update_diffusion_transformer(
diffusion_transformer_path
)
comment = "Success"
except Exception as e:
torch.cuda.empty_cache()
comment = f"Error. error information is {str(e)}"
return {"message": comment}
def save_base64_video(base64_string):
video_data = base64.b64decode(base64_string)
md5_hash = hashlib.md5(video_data).hexdigest()
filename = f"{md5_hash}.mp4"
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as video_file:
video_file.write(video_data)
return file_path
def save_base64_image(base64_string):
video_data = base64.b64decode(base64_string)
md5_hash = hashlib.md5(video_data).hexdigest()
filename = f"{md5_hash}.jpg"
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as video_file:
video_file.write(video_data)
return file_path
def infer_forward_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/easyanimate/infer_forward")
def _infer_forward_api(
datas: dict,
):
base_model_path = datas.get('base_model_path', 'none')
motion_module_path = datas.get('motion_module_path', 'none')
lora_model_path = datas.get('lora_model_path', 'none')
lora_alpha_slider = datas.get('lora_alpha_slider', 0.55)
prompt_textbox = datas.get('prompt_textbox', None)
negative_prompt_textbox = datas.get('negative_prompt_textbox', 'Blurring, mutation, deformation, distortion, dark and solid, comics, text subtitles, line art.')
sampler_dropdown = datas.get('sampler_dropdown', 'Euler')
sample_step_slider = datas.get('sample_step_slider', 30)
resize_method = datas.get('resize_method', "Generate by")
width_slider = datas.get('width_slider', 672)
height_slider = datas.get('height_slider', 384)
base_resolution = datas.get('base_resolution', 512)
is_image = datas.get('is_image', False)
generation_method = datas.get('generation_method', False)
length_slider = datas.get('length_slider', 49)
overlap_video_length = datas.get('overlap_video_length', 4)
partial_video_length = datas.get('partial_video_length', 72)
cfg_scale_slider = datas.get('cfg_scale_slider', 6)
start_image = datas.get('start_image', None)
end_image = datas.get('end_image', None)
validation_video = datas.get('validation_video', None)
validation_video_mask = datas.get('validation_video_mask', None)
control_video = datas.get('control_video', None)
denoise_strength = datas.get('denoise_strength', 0.70)
seed_textbox = datas.get("seed_textbox", 43)
generation_method = "Image Generation" if is_image else generation_method
if start_image is not None:
start_image = base64.b64decode(start_image)
start_image = [Image.open(BytesIO(start_image))]
if end_image is not None:
end_image = base64.b64decode(end_image)
end_image = [Image.open(BytesIO(end_image))]
if validation_video is not None:
validation_video = save_base64_video(validation_video)
if validation_video_mask is not None:
validation_video_mask = save_base64_image(validation_video_mask)
if control_video is not None:
control_video = save_base64_video(control_video)
try:
save_sample_path, comment = controller.generate(
"",
base_model_path,
motion_module_path,
lora_model_path,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
resize_method,
width_slider,
height_slider,
base_resolution,
generation_method,
length_slider,
overlap_video_length,
partial_video_length,
cfg_scale_slider,
start_image,
end_image,
validation_video,
validation_video_mask,
control_video,
denoise_strength,
seed_textbox,
is_api = True,
)
except Exception as e:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
save_sample_path = ""
comment = f"Error. error information is {str(e)}"
return {"message": comment}
if save_sample_path != "":
return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)}
else:
return {"message": comment, "save_sample_path": save_sample_path} |