Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shlex
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from diffusers import DiffusionPipeline
|
9 |
+
|
10 |
+
subprocess.run(
|
11 |
+
shlex.split(
|
12 |
+
"pip install https://huggingface.co/spaces/dylanebert/LGM-mini/resolve/main/wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"
|
13 |
+
)
|
14 |
+
)
|
15 |
+
|
16 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
17 |
+
"vulture990/2D-3D",
|
18 |
+
custom_pipeline="vulture990/2D-3D",
|
19 |
+
torch_dtype=torch.float16,
|
20 |
+
trust_remote_code=True,
|
21 |
+
).to("cuda")
|
22 |
+
|
23 |
+
|
24 |
+
@spaces.GPU
|
25 |
+
def run(image):
|
26 |
+
input_image = np.array(image, dtype=np.float32) / 255.0
|
27 |
+
splat = pipeline(
|
28 |
+
"", input_image, guidance_scale=5, num_inference_steps=30, elevation=0
|
29 |
+
)
|
30 |
+
splat_file = "/tmp/output.ply"
|
31 |
+
pipeline.save_ply(splat, splat_file)
|
32 |
+
return splat_file
|
33 |
+
|
34 |
+
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=run,
|
37 |
+
title="LGM Tiny",
|
38 |
+
description="An extremely simplified version of [LGM](https://huggingface.co/ashawkey/LGM). Intended as resource for the [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course/unit0/introduction).",
|
39 |
+
inputs="image",
|
40 |
+
outputs=gr.Model3D(),
|
41 |
+
examples=[
|
42 |
+
# "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"
|
43 |
+
"https://ibb.co/GTGc7X1",
|
44 |
+
"https://ibb.co/k5vRx9J",
|
45 |
+
"https://ibb.co/8YsHPZp",
|
46 |
+
"https://ibb.co/n0g9V89"
|
47 |
+
],
|
48 |
+
cache_examples=True,
|
49 |
+
allow_duplication=True,
|
50 |
+
)
|
51 |
+
demo.queue().launch()
|