Spaces:
Sleeping
Sleeping
Create funcs.py
Browse files
funcs.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import io
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import os
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
from openai import OpenAI
|
| 13 |
+
from ai71 import AI71
|
| 14 |
+
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
model = model.to('cuda')
|
| 17 |
+
|
| 18 |
+
# dials_embeddings = pd.read_pickle('dials_embeddings.pkl')
|
| 19 |
+
# dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/dials_embeddings.pkl')
|
| 20 |
+
dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/kaggle_therapy_embeddings.pkl')
|
| 21 |
+
with open ('emotion_group_labels.txt') as file:
|
| 22 |
+
emotion_group_labels = file.read().splitlines()
|
| 23 |
+
|
| 24 |
+
embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 25 |
+
classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli')
|
| 26 |
+
|
| 27 |
+
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
| 28 |
+
AI71_API_KEY = os.getenv('AI71_API_KEY')
|
| 29 |
+
|
| 30 |
+
# Detect emotions from patient dialogues
|
| 31 |
+
def detect_emotions(text):
|
| 32 |
+
emotion = classifier(text, candidate_labels=emotion_group_labels, batch_size=16)
|
| 33 |
+
top_5_scores = [i/sum(emotion['scores'][:5]) for i in emotion['scores'][:5]]
|
| 34 |
+
top_5_emotions = emotion['labels'][:5]
|
| 35 |
+
emotion_set = {l: "{:.2%}".format(s) for l, s in zip(top_5_emotions, top_5_scores)}
|
| 36 |
+
return emotion_set
|
| 37 |
+
|
| 38 |
+
# Measure cosine similarity between a pair of vectors
|
| 39 |
+
def cosine_distance(vec1,vec2):
|
| 40 |
+
cosine = (np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))
|
| 41 |
+
return cosine
|
| 42 |
+
|
| 43 |
+
# Generate an image of trigger emotions
|
| 44 |
+
def generate_triggers_img(items):
|
| 45 |
+
labels = list(items.keys())
|
| 46 |
+
values = [float(v.strip('%')) for v in items.values()] # Convert to float for plotting
|
| 47 |
+
|
| 48 |
+
new_items = {k:v for k, v in zip(labels, values)}
|
| 49 |
+
new_items = dict(sorted(new_items.items(), key=lambda item: item[1]))
|
| 50 |
+
labels = list(new_items.keys())
|
| 51 |
+
values = list(new_items.values())
|
| 52 |
+
|
| 53 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 54 |
+
colors = plt.cm.viridis(np.linspace(0, 1, len(labels)))
|
| 55 |
+
|
| 56 |
+
bars = ax.barh(labels, values, color=colors)
|
| 57 |
+
|
| 58 |
+
for spine in ax.spines.values():
|
| 59 |
+
spine.set_visible(False)
|
| 60 |
+
|
| 61 |
+
ax.tick_params(axis='y', labelsize=18)
|
| 62 |
+
ax.xaxis.set_visible(False)
|
| 63 |
+
ax.yaxis.set_ticks_position('none')
|
| 64 |
+
|
| 65 |
+
for bar in bars:
|
| 66 |
+
width = bar.get_width()
|
| 67 |
+
ax.text(width, bar.get_y() + bar.get_height()/2, f'{width:.2f}%',
|
| 68 |
+
ha='left', va='center', fontweight='bold', fontsize=18)
|
| 69 |
+
|
| 70 |
+
plt.tight_layout()
|
| 71 |
+
plt.savefig('triggeres.png')
|
| 72 |
+
triggers_img = Image.open('triggeres.png')
|
| 73 |
+
return triggers_img
|
| 74 |
+
|
| 75 |
+
class session_processor:
|
| 76 |
+
def __init__(self):
|
| 77 |
+
self.session_conversation = []
|
| 78 |
+
|
| 79 |
+
# Generate therapist responses and patient triggers
|
| 80 |
+
def get_doc_response_emotions(user_message, therapy_session_conversation):
|
| 81 |
+
|
| 82 |
+
user_messages = []
|
| 83 |
+
user_messages.append(user_message)
|
| 84 |
+
emotion_set = detect_emotions(user_message)
|
| 85 |
+
print(emotion_set)
|
| 86 |
+
|
| 87 |
+
emotions_msg = generate_triggers_img(emotion_set)
|
| 88 |
+
user_embedding = embed_model.encode(user_message, device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 89 |
+
|
| 90 |
+
similarities =[]
|
| 91 |
+
for v in dials_embeddings['embeddings']:
|
| 92 |
+
similarities.append(cosine_distance(user_embedding,v))
|
| 93 |
+
|
| 94 |
+
top_match_index = similarities.index(max(similarities))
|
| 95 |
+
# doc_response = dials_embeddings.iloc[top_match_index+1]['Doctor']
|
| 96 |
+
doc_response = dials_embeddings.iloc[top_match_index]['Doctor']
|
| 97 |
+
|
| 98 |
+
therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])
|
| 99 |
+
|
| 100 |
+
self.session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response])
|
| 101 |
+
|
| 102 |
+
print(f"User's message: {user_message}")
|
| 103 |
+
print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
|
| 104 |
+
# print(f"Therapist's response: {dials_embeddings.iloc[top_match_index+1]['Doctor']}\n\n")
|
| 105 |
+
print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")
|
| 106 |
+
|
| 107 |
+
return '', therapy_session_conversation, emotions_msg
|
| 108 |
+
|
| 109 |
+
# Generate summarization and recommendations for teh session
|
| 110 |
+
def summarize_and_recommend():
|
| 111 |
+
session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
| 112 |
+
session_conversation_processed = self.session_conversation.copy()
|
| 113 |
+
session_conversation_processed.insert(0, "Session_time: "+session_time)
|
| 114 |
+
session_conversation_processed ='\n'.join(session_conversation_processed)
|
| 115 |
+
print("Session conversation:", session_conversation_processed)
|
| 116 |
+
|
| 117 |
+
AI71_BASE_URL = "https://api.ai71.ai/v1/"
|
| 118 |
+
|
| 119 |
+
client = OpenAI(
|
| 120 |
+
api_key=AI71_API_KEY,
|
| 121 |
+
base_url=AI71_BASE_URL,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
full_summary = ""
|
| 125 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
| 126 |
+
model="tiiuae/falcon-180b-chat",
|
| 127 |
+
messages=[
|
| 128 |
+
{"role": "system", "content": """You are an Expert Cognitive Behavioural Therapist and Precis writer.
|
| 129 |
+
Summarize the below user content <<<session_conversation_processed>>> into useful, ethical, relevant and realistic phrases with a format
|
| 130 |
+
Session Time:
|
| 131 |
+
Summary of the patient messages: #in two to four sentences
|
| 132 |
+
Summary of therapist messages: #in two to three sentences:
|
| 133 |
+
Summary of the whole session: # in two to three sentences. Ensure the entire session summary strictly does not exceed 100 tokens."""},
|
| 134 |
+
{"role": "user", "content": session_conversation_processed},
|
| 135 |
+
],
|
| 136 |
+
stream=True,
|
| 137 |
+
):
|
| 138 |
+
if chunk.choices[0].delta.content:
|
| 139 |
+
summary = chunk.choices[0].delta.content
|
| 140 |
+
# print("Chunk summary:", summary, sep="", end="", flush=True)
|
| 141 |
+
full_summary += summary
|
| 142 |
+
full_summary = full_summary.replace('User:', '').strip()
|
| 143 |
+
print("\n")
|
| 144 |
+
print("Full summary:", full_summary)
|
| 145 |
+
|
| 146 |
+
full_recommendations = ""
|
| 147 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
| 148 |
+
model="tiiuae/falcon-180b-chat",
|
| 149 |
+
messages=[
|
| 150 |
+
{"role": "system", "content": """You are an expert Cognitive Behavioural Therapist.
|
| 151 |
+
Based on the full summary <<<full_summary>>> provide clinically valid, useful, appropriate action plan for the Patient as a bullted list.
|
| 152 |
+
The list shall contain both medical and non medical prescriptions, dos and donts. The format of response shall be in passive voice with proper tense.
|
| 153 |
+
- The patient is referred to........ #in one sentence
|
| 154 |
+
- The patient is advised to ........ #in one sentence
|
| 155 |
+
- The patient is refrained from........ #in one sentence
|
| 156 |
+
- It is suggested that tha patient ........ #in one sentence
|
| 157 |
+
- Scheduled a follow-up session with the patient........#in one sentence
|
| 158 |
+
*Ensure the list contains NOT MORE THAN 7 points"""},
|
| 159 |
+
{"role": "user", "content": full_summary},
|
| 160 |
+
],
|
| 161 |
+
stream=True,
|
| 162 |
+
):
|
| 163 |
+
if chunk.choices[0].delta.content:
|
| 164 |
+
rec = chunk.choices[0].delta.content
|
| 165 |
+
# print("Chunk recommendation:", rec, sep="", end="", flush=True)
|
| 166 |
+
full_recommendations += rec
|
| 167 |
+
full_recommendations = full_recommendations.replace('User:', '').strip()
|
| 168 |
+
print("\n")
|
| 169 |
+
print("Full recommendations:", full_recommendations)
|
| 170 |
+
self.session_conversation=[]
|
| 171 |
+
return full_summary, full_recommendations
|