import re import os import requests import gradio as gr from datasets import load_dataset from PIL import Image from io import BytesIO import torch from torch import autocast from transformers import pipeline, set_seed from diffusers import DiffusionPipeline, StableDiffusionPipeline # Config DEVICE = "cuda" # GPT2 generator = pipeline('text-generation', model='gpt2') set_seed(42) generator("Hello world, I'm vizard,", max_length=50, num_return_sequences=3) # SD v1.4 def get_stable_diffusion_v14_pipeline(): model_id = "CompVis/stable-diffusion-v1-4" pipeline = StableDiffusionPipeline.from_pretrained(mode_id) # pipeline = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16) pipeline = pipeline.to(DEVICE) torch.backends.cudnn.benchmark = True return pipeline # SD v1.5 def get_stable_diffusion_v15_pipeline(): model_id = "runwayml/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(mode_id) pipeline = pipeline.to(DEVICE) return pipeline def get_image(url): response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") resized_image = image.resize((768, 512)) return resized_image # main def main(): prompt = "Hello world, I'm vizard," pipeline = get_stable_diffusion_v15_pipeline() images = pipeline(prompt).images main