Spaces:
Runtime error
Runtime error
import re | |
import os | |
import requests | |
import gradio as gr | |
from datasets import load_dataset | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
from torch import autocast | |
from transformers import pipeline, set_seed | |
from diffusers import DiffusionPipeline, StableDiffusionPipeline | |
# Config | |
DEVICE = "cuda" | |
# GPT2 | |
def get_gpt2_pipeline(): | |
generator = pipeline('text-generation', model='gpt2') | |
set_seed(42) | |
# generator("Hello world, I'm vizard,", max_length=50, num_return_sequences=3) | |
return generator | |
# Text Summarizer | |
def get_text_summarizer_pipeline(): | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# generator("Hello world, I'm vizard,", max_length=50, num_return_sequences=3) | |
return summarizer | |
# SD v1.4 | |
def get_stable_diffusion_v14_pipeline(): | |
model_id = "CompVis/stable-diffusion-v1-4" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True) | |
# pipeline = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16) | |
pipe = pipe.to(DEVICE) | |
torch.backends.cudnn.benchmark = True | |
return pipe | |
# SD v1.5 | |
def get_stable_diffusion_v15_pipeline(): | |
model_id = "runwayml/stable-diffusion-v1-5" | |
pipe = DiffusionPipeline.from_pretrained(mode_id) | |
pipe = pipe.to(DEVICE) | |
return pipe | |
def get_image(url): | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
resized_image = image.resize((768, 512)) | |
return resized_image | |
# main | |
def main(): | |
prompt = "Hello world, I'm vizard," | |
gpt2_pipe = get_gpt2_pipeline() | |
def greet(prompt): | |
return gpt2_pipe(prompt, max_length=1000, num_return_sequences=3) | |
with gr.Blocks() as ui: | |
with gr.Row(): | |
with gr.Column(): | |
gpt_int = gr.Interface( | |
fn=greet, | |
inputs=gr.Textbox(lines=2, placeholder="Enter some text here..."), | |
outputs="text", | |
title="GPT2", | |
description="OneDesc", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gpt_int2 = gr.Interface( | |
fn=greet, | |
inputs=gr.Textbox(lines=2, placeholder="Enter some text here..."), | |
outputs="text", | |
title="GPT2", | |
description="OneDesc", | |
) | |
gr.Examples(['one.png', 'two.png', 'three.jpeg']) | |
# ui = gr.Interface.from_pipeline( | |
# get_text_summarizer_pipeline(), | |
# title="OneTitle", | |
# description="OneDesc", | |
# examples=['one.png', 'two.png', 'three.jpeg'], | |
# ) | |
ui.launch(enable_queue=True) | |
# pipe = pipeline(task="image-classification", model="microsoft/dit-base-finetuned-rvlcdip") | |
#gr.Interface.from_pipeline( | |
# pipe, | |
# title="OneTitle", | |
# description="OneDescription", | |
# examples=['one.png', 'two.png', 'three.jpeg'], | |
# ).launch() | |
# pipe2 = get_stable_diffusion_v15_pipeline() | |
# images = pipe2(prompt).images | |
main() |