playground / app.py
vs4vijay's picture
Update app.py
403214b
raw
history blame
1.89 kB
import re
import os
import requests
import gradio as gr
from datasets import load_dataset
from PIL import Image
from io import BytesIO
import torch
from torch import autocast
from transformers import pipeline, set_seed
from diffusers import DiffusionPipeline, StableDiffusionPipeline
# Config
DEVICE = "cuda"
# GPT2
def get_gpt2_pipeline():
generator = pipeline('text-generation', model='gpt2')
set_seed(42)
# generator("Hello world, I'm vizard,", max_length=50, num_return_sequences=3)
return generator
# SD v1.4
def get_stable_diffusion_v14_pipeline():
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(mode_id)
# pipeline = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to(DEVICE)
torch.backends.cudnn.benchmark = True
return pipe
# SD v1.5
def get_stable_diffusion_v15_pipeline():
model_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(mode_id)
pipe = pipe.to(DEVICE)
return pipe
def get_image(url):
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
resized_image = image.resize((768, 512))
return resized_image
# main
def main():
prompt = "Hello world, I'm vizard,"
pipe = pipeline(task="image-classification",
model="microsoft/dit-base-finetuned-rvlcdip")
gr.Interface.from_pipeline(pipe,
title=title,
description=description,
examples=['coca_cola_advertisement.png', 'scientific_publication.png', 'letter.jpeg'],
article=article,
enable_queue=True,
).launch()
# pipe2 = get_stable_diffusion_v15_pipeline()
# images = pipe2(prompt).images
main