File size: 1,301 Bytes
16d3159 3d41755 16d3159 2569820 16d3159 2569820 16d3159 2569820 16d3159 2569820 16d3159 2569820 16d3159 2569820 16d3159 2569820 16d3159 2569820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("vkSJSU/mistral-7b-dowjones-sft")
# Modify the respond function for text generation instead of chat completion
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
input_text = f"{system_message}\n{message}"
response = ""
for token in client.text_generation(
input_text,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
response += token
yield response
# Define the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch() |