VIVEK JAYARAM
commited on
Commit
·
1f460ce
1
Parent(s):
d8bc485
Gradio demo
Browse files- gradio_demo.py +155 -0
- requirements.txt +1 -0
gradio_demo.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import yaml
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import time
|
| 8 |
+
from cdim.noise import get_noise
|
| 9 |
+
from cdim.operators import get_operator
|
| 10 |
+
from cdim.image_utils import save_to_image
|
| 11 |
+
from cdim.dps_model.dps_unet import create_model
|
| 12 |
+
from cdim.diffusion.scheduling_ddim import DDIMScheduler
|
| 13 |
+
from cdim.diffusion.diffusion_pipeline import run_diffusion
|
| 14 |
+
from cdim.eta_scheduler import EtaScheduler
|
| 15 |
+
from diffusers import DiffusionPipeline
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Global variables for model and scheduler
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
model = None
|
| 21 |
+
ddim_scheduler = None
|
| 22 |
+
model_type = None
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_image(image_path):
|
| 26 |
+
"""Process input image to tensor format."""
|
| 27 |
+
image = Image.open(image_path)
|
| 28 |
+
original_image = np.array(image.resize((256, 256), Image.BICUBIC))
|
| 29 |
+
original_image = torch.from_numpy(original_image).unsqueeze(0).permute(0, 3, 1, 2)
|
| 30 |
+
return (original_image / 127.5 - 1.0).to(torch.float)[:, :3]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_yaml(file_path: str) -> dict:
|
| 34 |
+
"""Load configurations from a YAML file."""
|
| 35 |
+
with open(file_path) as f:
|
| 36 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 37 |
+
return config
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def convert_to_np(torch_image):
|
| 41 |
+
return ((torch_image.detach().clamp(-1, 1).cpu().numpy().transpose(1, 2, 0) + 1) * 127.5).astype(np.uint8)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def generate_noisy_image(image_choice, noise_sigma, operator_key):
|
| 45 |
+
"""Generate the noisy image and store necessary data for restoration."""
|
| 46 |
+
# Map image choice to path
|
| 47 |
+
image_paths = {
|
| 48 |
+
"CelebA HQ 1": "sample_images/celebhq_29999.jpg",
|
| 49 |
+
"CelebA HQ 2": "sample_images/celebhq_00001.jpg",
|
| 50 |
+
"CelebA HQ 3": "sample_images/celebhq_00000.jpg"
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
config_paths = {
|
| 54 |
+
"Box Inpainting": "operator_configs/box_inpainting_config.yaml",
|
| 55 |
+
"Random Inpainting": "operator_configs/random_inpainting_config.yaml",
|
| 56 |
+
"Super Resolution": "operator_configs/super_resolution_config.yaml",
|
| 57 |
+
"Gaussian Deblur": "operator_configs/gaussian_blur_config.yaml"
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
image_path = image_paths[image_choice]
|
| 61 |
+
|
| 62 |
+
# Load image and get noisy version
|
| 63 |
+
original_image = load_image(image_path).to(device)
|
| 64 |
+
noise_config = load_yaml("noise_configs/gaussian_noise_config.yaml")
|
| 65 |
+
noise_config["sigma"] = noise_sigma
|
| 66 |
+
noise_function = get_noise(**noise_config)
|
| 67 |
+
operator_config = load_yaml(config_paths[operator_key])
|
| 68 |
+
operator_config["device"] = device
|
| 69 |
+
operator = get_operator(**operator_config)
|
| 70 |
+
|
| 71 |
+
noisy_measurement = noise_function(operator(original_image))
|
| 72 |
+
noisy_image = Image.fromarray(convert_to_np(noisy_measurement[0]))
|
| 73 |
+
|
| 74 |
+
# Store necessary data for restoration
|
| 75 |
+
data = {
|
| 76 |
+
'noisy_measurement': noisy_measurement,
|
| 77 |
+
'operator': operator,
|
| 78 |
+
'noise_function': noise_function
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
return noisy_image, data # Return the noisy image and data for restoration
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def run_restoration(data, T, K):
|
| 85 |
+
"""Run the restoration process and return the restored image."""
|
| 86 |
+
global model, ddim_scheduler, model_type
|
| 87 |
+
|
| 88 |
+
# Extract stored data
|
| 89 |
+
noisy_measurement = data['noisy_measurement']
|
| 90 |
+
operator = data['operator']
|
| 91 |
+
noise_function = data['noise_function']
|
| 92 |
+
|
| 93 |
+
# Initialize model if not already done
|
| 94 |
+
if model is None:
|
| 95 |
+
model_type = "diffusers"
|
| 96 |
+
model = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256").to("cuda").unet
|
| 97 |
+
|
| 98 |
+
ddim_scheduler = DDIMScheduler(
|
| 99 |
+
num_train_timesteps=1000,
|
| 100 |
+
beta_start=0.0001,
|
| 101 |
+
beta_end=0.02,
|
| 102 |
+
beta_schedule="linear"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Run restoration
|
| 106 |
+
eta_scheduler = EtaScheduler("gradnorm", operator.name, T, K, 'l2', noise_function, None)
|
| 107 |
+
output_image = run_diffusion(
|
| 108 |
+
model, ddim_scheduler, noisy_measurement, operator, noise_function, device,
|
| 109 |
+
eta_scheduler, num_inference_steps=T, K=K, model_type=model_type, loss_type='l2'
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Convert output image for display
|
| 113 |
+
output_image = Image.fromarray(convert_to_np(output_image[0]))
|
| 114 |
+
return output_image
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
with gr.Blocks() as demo:
|
| 118 |
+
gr.Markdown("# Noisy Image Restoration with Diffusion Models")
|
| 119 |
+
|
| 120 |
+
with gr.Row():
|
| 121 |
+
T = gr.Slider(10, 200, value=50, step=1, label="Number of Inference Steps (T)")
|
| 122 |
+
K = gr.Slider(1, 10, value=3, step=1, label="K Value")
|
| 123 |
+
noise_sigma = gr.Slider(0, 0.6, value=0.05, step=0.01, label="Noise Sigma")
|
| 124 |
+
|
| 125 |
+
image_select = gr.Dropdown(
|
| 126 |
+
choices=["CelebA HQ 1", "CelebA HQ 2", "CelebA HQ 3"],
|
| 127 |
+
value="CelebA HQ 1",
|
| 128 |
+
label="Select Input Image"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
operator_select = gr.Dropdown(
|
| 132 |
+
choices=["Box Inpainting", "Random Inpainting", "Super Resolution", "Gaussian Deblur"],
|
| 133 |
+
value="Box Inpainting",
|
| 134 |
+
label="Select Task"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
run_button = gr.Button("Run Inference")
|
| 138 |
+
noisy_image = gr.Image(label="Noisy Image")
|
| 139 |
+
restored_image = gr.Image(label="Restored Image")
|
| 140 |
+
state = gr.State() # To store intermediate data
|
| 141 |
+
|
| 142 |
+
# First function generates the noisy image and stores data
|
| 143 |
+
run_button.click(
|
| 144 |
+
fn=generate_noisy_image,
|
| 145 |
+
inputs=[image_select, noise_sigma, operator_select],
|
| 146 |
+
outputs=[noisy_image, state],
|
| 147 |
+
).then(
|
| 148 |
+
fn=run_restoration,
|
| 149 |
+
inputs=[state, T, K],
|
| 150 |
+
outputs=restored_image
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
|
@@ -4,3 +4,4 @@ Pillow==11.0.0
|
|
| 4 |
PyYAML==6.0.2
|
| 5 |
scipy==1.14.1
|
| 6 |
tqdm==4.66.5
|
|
|
|
|
|
| 4 |
PyYAML==6.0.2
|
| 5 |
scipy==1.14.1
|
| 6 |
tqdm==4.66.5
|
| 7 |
+
graio==5.3.0
|