Spaces:
Runtime error
Runtime error
update v2
Browse files- README.md +1 -1
- app.py +30 -22
- conversation.py +370 -0
- llava.py → mgie_llava.py +22 -19
- pre-requirements.txt +4 -4
- requirements.txt +4 -4
- train.py +0 -831
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 👩🎨
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
license: other
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.12.0
|
| 8 |
app_file: app.py
|
| 9 |
license: other
|
| 10 |
---
|
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
|
|
@@ -11,8 +11,8 @@ import numpy as np
|
|
| 11 |
import torch as T
|
| 12 |
import transformers, diffusers
|
| 13 |
|
| 14 |
-
from
|
| 15 |
-
from
|
| 16 |
|
| 17 |
import gradio as gr
|
| 18 |
|
|
@@ -39,7 +39,7 @@ DEFAULT_IMAGE_TOKEN = '<image>'
|
|
| 39 |
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
| 40 |
DEFAULT_IM_START_TOKEN = '<im_start>'
|
| 41 |
DEFAULT_IM_END_TOKEN = '<im_end>'
|
| 42 |
-
PATH_LLAVA = '/
|
| 43 |
|
| 44 |
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
| 45 |
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
|
@@ -48,7 +48,7 @@ image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.m
|
|
| 48 |
tokenizer.padding_side = 'left'
|
| 49 |
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
| 50 |
model.resize_token_embeddings(len(tokenizer))
|
| 51 |
-
ckpt = T.load('/
|
| 52 |
model.load_state_dict(ckpt, strict=False)
|
| 53 |
|
| 54 |
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
|
@@ -65,15 +65,17 @@ if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token
|
|
| 65 |
image_token_len = (vision_config.image_size//vision_config.patch_size)**2
|
| 66 |
|
| 67 |
_ = model.eval()
|
| 68 |
-
EMB = ckpt['emb'].cuda()
|
| 69 |
-
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
| 70 |
|
| 71 |
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
| 72 |
pipe.set_progress_bar_config(disable=True)
|
| 73 |
-
pipe.unet.load_state_dict(T.load('/
|
| 74 |
print('--init MGIE--')
|
| 75 |
|
|
|
|
| 76 |
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
|
|
|
|
|
|
|
|
|
| 77 |
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
| 78 |
inp = img
|
| 79 |
|
|
@@ -87,6 +89,7 @@ def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
|
| 87 |
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
|
| 88 |
|
| 89 |
with T.inference_mode():
|
|
|
|
| 90 |
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
| 91 |
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
| 92 |
return_dict_in_generate=True, output_hidden_states=True)
|
|
@@ -98,6 +101,7 @@ def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
|
| 98 |
hid = hid[p:p+8]
|
| 99 |
|
| 100 |
out = remove_alter(tokenizer.decode(out))
|
|
|
|
| 101 |
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
| 102 |
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
| 103 |
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
|
@@ -105,14 +109,14 @@ def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
|
| 105 |
return res, out
|
| 106 |
|
| 107 |
def go_example(seed, cfg_txt, cfg_img):
|
| 108 |
-
|
| 109 |
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
|
| 110 |
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
|
| 111 |
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
|
| 112 |
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
|
| 113 |
-
i = T.randint(len(
|
| 114 |
|
| 115 |
-
return './_input/%d.jpg'%(i),
|
| 116 |
|
| 117 |
go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5)
|
| 118 |
print('--init GO--')
|
|
@@ -120,25 +124,29 @@ print('--init GO--')
|
|
| 120 |
with gr.Blocks() as app:
|
| 121 |
gr.Markdown(
|
| 122 |
"""
|
| 123 |
-
🔔 we will have a maintenance at 3 a.m. (PST)
|
| 124 |
# [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br>
|
| 125 |
🔔 this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br>
|
| 126 |
🔔 a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br>
|
| 127 |
-
🔔 if the queue is full (*
|
| 128 |
🔔 if the building process takes too long, please try refreshing the page
|
| 129 |
"""
|
| 130 |
)
|
| 131 |
with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
|
| 132 |
-
gr.Image(height=384, width=384, label='Goal Image', interactive=
|
| 133 |
with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True),
|
| 134 |
gr.Textbox(label='Expressive Instruction', interactive=False)]
|
| 135 |
with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
|
| 136 |
gr.Number(value=7.5, label='Text CFG', interactive=True),
|
| 137 |
gr.Number(value=1.5, label='Image CFG', interactive=True)]
|
| 138 |
-
with gr.Row():
|
| 139 |
-
gr.Button('Example')]
|
| 140 |
-
|
| 141 |
-
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
| 142 |
btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
app.
|
|
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
+
|
| 4 |
+
import huggingface_hub, spaces
|
| 5 |
+
huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False)
|
| 6 |
+
os.system('ls _ckpt')
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
|
|
|
|
| 11 |
import torch as T
|
| 12 |
import transformers, diffusers
|
| 13 |
|
| 14 |
+
from conversation import conv_templates
|
| 15 |
+
from mgie_llava import *
|
| 16 |
|
| 17 |
import gradio as gr
|
| 18 |
|
|
|
|
| 39 |
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
| 40 |
DEFAULT_IM_START_TOKEN = '<im_start>'
|
| 41 |
DEFAULT_IM_END_TOKEN = '<im_end>'
|
| 42 |
+
PATH_LLAVA = '_ckpt/LLaVA-7B-v1'
|
| 43 |
|
| 44 |
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
| 45 |
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
|
|
|
| 48 |
tokenizer.padding_side = 'left'
|
| 49 |
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
| 50 |
model.resize_token_embeddings(len(tokenizer))
|
| 51 |
+
ckpt = T.load('_ckpt/mgie_7b/mllm.pt', map_location='cpu')
|
| 52 |
model.load_state_dict(ckpt, strict=False)
|
| 53 |
|
| 54 |
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
|
|
|
| 65 |
image_token_len = (vision_config.image_size//vision_config.patch_size)**2
|
| 66 |
|
| 67 |
_ = model.eval()
|
|
|
|
|
|
|
| 68 |
|
| 69 |
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
| 70 |
pipe.set_progress_bar_config(disable=True)
|
| 71 |
+
pipe.unet.load_state_dict(T.load('_ckpt/mgie_7b/unet.pt', map_location='cpu'))
|
| 72 |
print('--init MGIE--')
|
| 73 |
|
| 74 |
+
@spaces.GPU(enable_queue=True)
|
| 75 |
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
| 76 |
+
EMB = ckpt['emb'].cuda()
|
| 77 |
+
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
| 78 |
+
|
| 79 |
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
| 80 |
inp = img
|
| 81 |
|
|
|
|
| 89 |
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask'])
|
| 90 |
|
| 91 |
with T.inference_mode():
|
| 92 |
+
_ = model.cuda()
|
| 93 |
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
| 94 |
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
| 95 |
return_dict_in_generate=True, output_hidden_states=True)
|
|
|
|
| 101 |
hid = hid[p:p+8]
|
| 102 |
|
| 103 |
out = remove_alter(tokenizer.decode(out))
|
| 104 |
+
_ = model.cuda()
|
| 105 |
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
| 106 |
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
| 107 |
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
|
|
|
| 109 |
return res, out
|
| 110 |
|
| 111 |
def go_example(seed, cfg_txt, cfg_img):
|
| 112 |
+
ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
|
| 113 |
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
|
| 114 |
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
|
| 115 |
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
|
| 116 |
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
|
| 117 |
+
i = T.randint(len(ins), (1, )).item()
|
| 118 |
|
| 119 |
+
return './_input/%d.jpg'%(i), ins[i], seed, cfg_txt, cfg_img
|
| 120 |
|
| 121 |
go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5)
|
| 122 |
print('--init GO--')
|
|
|
|
| 124 |
with gr.Blocks() as app:
|
| 125 |
gr.Markdown(
|
| 126 |
"""
|
|
|
|
| 127 |
# [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br>
|
| 128 |
🔔 this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br>
|
| 129 |
🔔 a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br>
|
| 130 |
+
🔔 if the queue is full (*no GPU available*), you can also try it [here](http://128.111.41.13:7122)<br>
|
| 131 |
🔔 if the building process takes too long, please try refreshing the page
|
| 132 |
"""
|
| 133 |
)
|
| 134 |
with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
|
| 135 |
+
gr.Image(height=384, width=384, label='Goal Image', interactive=True)]
|
| 136 |
with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True),
|
| 137 |
gr.Textbox(label='Expressive Instruction', interactive=False)]
|
| 138 |
with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
|
| 139 |
gr.Number(value=7.5, label='Text CFG', interactive=True),
|
| 140 |
gr.Number(value=1.5, label='Image CFG', interactive=True)]
|
| 141 |
+
with gr.Row(): btn_exp, btn_sub = [gr.Button('More Example'), gr.Button('Submit')]
|
|
|
|
|
|
|
|
|
|
| 142 |
btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img])
|
| 143 |
+
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
| 144 |
+
|
| 145 |
+
ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion',
|
| 146 |
+
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast',
|
| 147 |
+
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out',
|
| 148 |
+
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb',
|
| 149 |
+
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood']
|
| 150 |
+
gr.Examples(examples=[['./_input/%d.jpg'%(i), ins[i]] for i in [1, 5, 8, 14, 16]], inputs=[inp, txt])
|
| 151 |
|
| 152 |
+
app.launch()
|
conversation.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/conversation.py
|
| 3 |
+
|
| 4 |
+
import dataclasses
|
| 5 |
+
from enum import auto, Enum
|
| 6 |
+
from typing import List, Tuple
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class SeparatorStyle(Enum):
|
| 10 |
+
"""Different separator style."""
|
| 11 |
+
SINGLE = auto()
|
| 12 |
+
TWO = auto()
|
| 13 |
+
MPT = auto()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclasses.dataclass
|
| 17 |
+
class Conversation:
|
| 18 |
+
"""A class that keeps all conversation history."""
|
| 19 |
+
system: str
|
| 20 |
+
roles: List[str]
|
| 21 |
+
messages: List[List[str]]
|
| 22 |
+
offset: int
|
| 23 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
| 24 |
+
sep: str = "###"
|
| 25 |
+
sep2: str = None
|
| 26 |
+
version: str = "Unknown"
|
| 27 |
+
|
| 28 |
+
skip_next: bool = False
|
| 29 |
+
|
| 30 |
+
def get_prompt(self):
|
| 31 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
| 32 |
+
ret = self.system + self.sep
|
| 33 |
+
for role, message in self.messages:
|
| 34 |
+
if message:
|
| 35 |
+
if type(message) is tuple:
|
| 36 |
+
message, _, _ = message
|
| 37 |
+
ret += role + ": " + message + self.sep
|
| 38 |
+
else:
|
| 39 |
+
ret += role + ":"
|
| 40 |
+
return ret
|
| 41 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
| 42 |
+
seps = [self.sep, self.sep2]
|
| 43 |
+
ret = self.system + seps[0]
|
| 44 |
+
for i, (role, message) in enumerate(self.messages):
|
| 45 |
+
if message:
|
| 46 |
+
if type(message) is tuple:
|
| 47 |
+
message, _, _ = message
|
| 48 |
+
ret += role + ": " + message + seps[i % 2]
|
| 49 |
+
else:
|
| 50 |
+
ret += role + ":"
|
| 51 |
+
return ret
|
| 52 |
+
if self.sep_style == SeparatorStyle.MPT:
|
| 53 |
+
ret = self.system + self.sep
|
| 54 |
+
for role, message in self.messages:
|
| 55 |
+
if message:
|
| 56 |
+
if type(message) is tuple:
|
| 57 |
+
message, _, _ = message
|
| 58 |
+
ret += role + message + self.sep
|
| 59 |
+
else:
|
| 60 |
+
ret += role
|
| 61 |
+
return ret
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 64 |
+
|
| 65 |
+
def append_message(self, role, message):
|
| 66 |
+
self.messages.append([role, message])
|
| 67 |
+
|
| 68 |
+
def get_images(self, return_pil=False):
|
| 69 |
+
images = []
|
| 70 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 71 |
+
if i % 2 == 0:
|
| 72 |
+
if type(msg) is tuple:
|
| 73 |
+
import base64
|
| 74 |
+
from io import BytesIO
|
| 75 |
+
from PIL import Image
|
| 76 |
+
msg, image, image_process_mode = msg
|
| 77 |
+
if image_process_mode == "Pad":
|
| 78 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
| 79 |
+
width, height = pil_img.size
|
| 80 |
+
if width == height:
|
| 81 |
+
return pil_img
|
| 82 |
+
elif width > height:
|
| 83 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 84 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 85 |
+
return result
|
| 86 |
+
else:
|
| 87 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 88 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 89 |
+
return result
|
| 90 |
+
image = expand2square(image)
|
| 91 |
+
elif image_process_mode == "Crop":
|
| 92 |
+
pass
|
| 93 |
+
elif image_process_mode == "Resize":
|
| 94 |
+
image = image.resize((224, 224))
|
| 95 |
+
else:
|
| 96 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
| 97 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
| 98 |
+
aspect_ratio = max_hw / min_hw
|
| 99 |
+
max_len, min_len = 800, 400
|
| 100 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
| 101 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
| 102 |
+
W, H = image.size
|
| 103 |
+
if H > W:
|
| 104 |
+
H, W = longest_edge, shortest_edge
|
| 105 |
+
else:
|
| 106 |
+
H, W = shortest_edge, longest_edge
|
| 107 |
+
image = image.resize((W, H))
|
| 108 |
+
if return_pil:
|
| 109 |
+
images.append(image)
|
| 110 |
+
else:
|
| 111 |
+
buffered = BytesIO()
|
| 112 |
+
image.save(buffered, format="JPEG")
|
| 113 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
| 114 |
+
images.append(img_b64_str)
|
| 115 |
+
return images
|
| 116 |
+
|
| 117 |
+
def to_gradio_chatbot(self):
|
| 118 |
+
ret = []
|
| 119 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 120 |
+
if i % 2 == 0:
|
| 121 |
+
if type(msg) is tuple:
|
| 122 |
+
import base64
|
| 123 |
+
from io import BytesIO
|
| 124 |
+
msg, image, image_process_mode = msg
|
| 125 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
| 126 |
+
aspect_ratio = max_hw / min_hw
|
| 127 |
+
max_len, min_len = 800, 400
|
| 128 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
| 129 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
| 130 |
+
W, H = image.size
|
| 131 |
+
if H > W:
|
| 132 |
+
H, W = longest_edge, shortest_edge
|
| 133 |
+
else:
|
| 134 |
+
H, W = shortest_edge, longest_edge
|
| 135 |
+
image = image.resize((W, H))
|
| 136 |
+
# image = image.resize((224, 224))
|
| 137 |
+
buffered = BytesIO()
|
| 138 |
+
image.save(buffered, format="JPEG")
|
| 139 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
| 140 |
+
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
| 141 |
+
msg = msg.replace('<image>', img_str)
|
| 142 |
+
ret.append([msg, None])
|
| 143 |
+
else:
|
| 144 |
+
ret[-1][-1] = msg
|
| 145 |
+
return ret
|
| 146 |
+
|
| 147 |
+
def copy(self):
|
| 148 |
+
return Conversation(
|
| 149 |
+
system=self.system,
|
| 150 |
+
roles=self.roles,
|
| 151 |
+
messages=[[x, y] for x, y in self.messages],
|
| 152 |
+
offset=self.offset,
|
| 153 |
+
sep_style=self.sep_style,
|
| 154 |
+
sep=self.sep,
|
| 155 |
+
sep2=self.sep2)
|
| 156 |
+
|
| 157 |
+
def dict(self):
|
| 158 |
+
if len(self.get_images()) > 0:
|
| 159 |
+
return {
|
| 160 |
+
"system": self.system,
|
| 161 |
+
"roles": self.roles,
|
| 162 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
| 163 |
+
"offset": self.offset,
|
| 164 |
+
"sep": self.sep,
|
| 165 |
+
"sep2": self.sep2,
|
| 166 |
+
}
|
| 167 |
+
return {
|
| 168 |
+
"system": self.system,
|
| 169 |
+
"roles": self.roles,
|
| 170 |
+
"messages": self.messages,
|
| 171 |
+
"offset": self.offset,
|
| 172 |
+
"sep": self.sep,
|
| 173 |
+
"sep2": self.sep2,
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
conv_v1 = Conversation(
|
| 178 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
| 179 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
| 180 |
+
roles=("Human", "Assistant"),
|
| 181 |
+
messages=(
|
| 182 |
+
("Human", "Give three tips for staying healthy."),
|
| 183 |
+
("Assistant",
|
| 184 |
+
"Sure, here are three tips for staying healthy:\n"
|
| 185 |
+
"1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
|
| 186 |
+
"It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
|
| 187 |
+
"and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
|
| 188 |
+
"75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
|
| 189 |
+
"activities at least two days per week.\n"
|
| 190 |
+
"2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
|
| 191 |
+
"vegetables, whole grains, lean proteins, and healthy fats can help support "
|
| 192 |
+
"your overall health. Try to limit your intake of processed and high-sugar foods, "
|
| 193 |
+
"and aim to drink plenty of water throughout the day.\n"
|
| 194 |
+
"3. Get enough sleep: Getting enough quality sleep is essential for your physical "
|
| 195 |
+
"and mental health. Adults should aim for seven to nine hours of sleep per night. "
|
| 196 |
+
"Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
|
| 197 |
+
"help improve the quality of your sleep.")
|
| 198 |
+
),
|
| 199 |
+
offset=2,
|
| 200 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 201 |
+
sep="###",
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
conv_v1_2 = Conversation(
|
| 205 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
| 206 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
| 207 |
+
roles=("Human", "Assistant"),
|
| 208 |
+
messages=(
|
| 209 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
| 210 |
+
("Assistant",
|
| 211 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
| 212 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
| 213 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
| 214 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
| 215 |
+
"renewable and non-renewable energy sources:\n"
|
| 216 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
| 217 |
+
"energy sources are finite and will eventually run out.\n"
|
| 218 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
| 219 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
| 220 |
+
"and other negative effects.\n"
|
| 221 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
| 222 |
+
"have lower operational costs than non-renewable sources.\n"
|
| 223 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
| 224 |
+
"locations than non-renewable sources.\n"
|
| 225 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
| 226 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
| 227 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
| 228 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
| 229 |
+
),
|
| 230 |
+
offset=2,
|
| 231 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 232 |
+
sep="###",
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
conv_vicuna_v1_1 = Conversation(
|
| 236 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
| 237 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
| 238 |
+
roles=("USER", "ASSISTANT"),
|
| 239 |
+
version="v1",
|
| 240 |
+
messages=(),
|
| 241 |
+
offset=0,
|
| 242 |
+
sep_style=SeparatorStyle.TWO,
|
| 243 |
+
sep=" ",
|
| 244 |
+
sep2="</s>",
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
conv_mpt = Conversation(
|
| 248 |
+
system="""<|im_start|>system
|
| 249 |
+
- You are a helpful language and vision assistant.
|
| 250 |
+
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
| 251 |
+
- You should follow the instructions carefully and explain your answers in detail.""",
|
| 252 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 253 |
+
version="mpt",
|
| 254 |
+
messages=(),
|
| 255 |
+
offset=0,
|
| 256 |
+
sep_style=SeparatorStyle.MPT,
|
| 257 |
+
sep="<|im_end|>",
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
conv_mpt_text = Conversation(
|
| 261 |
+
system="""<|im_start|>system
|
| 262 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
| 263 |
+
- You answer questions.
|
| 264 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
| 265 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
|
| 266 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 267 |
+
version="mpt",
|
| 268 |
+
messages=(),
|
| 269 |
+
offset=0,
|
| 270 |
+
sep_style=SeparatorStyle.MPT,
|
| 271 |
+
sep="<|im_end|>",
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
conv_bair_v1 = Conversation(
|
| 275 |
+
system="BEGINNING OF CONVERSATION:",
|
| 276 |
+
roles=("USER", "GPT"),
|
| 277 |
+
messages=(),
|
| 278 |
+
offset=0,
|
| 279 |
+
sep_style=SeparatorStyle.TWO,
|
| 280 |
+
sep=" ",
|
| 281 |
+
sep2="</s>",
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
simple_conv = Conversation(
|
| 285 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
| 286 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
| 287 |
+
roles=("Human", "Assistant"),
|
| 288 |
+
messages=(
|
| 289 |
+
("Human", "Hi!"),
|
| 290 |
+
("Assistant", "Hi there! How can I help you today?")
|
| 291 |
+
),
|
| 292 |
+
offset=2,
|
| 293 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 294 |
+
sep="###",
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
simple_conv_multimodal = Conversation(
|
| 298 |
+
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
| 299 |
+
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
| 300 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
| 301 |
+
roles=("Human", "Assistant"),
|
| 302 |
+
messages=(
|
| 303 |
+
("Human", "Hi!"),
|
| 304 |
+
("Assistant", "Hi there! How can I help you today?\n")
|
| 305 |
+
),
|
| 306 |
+
offset=2,
|
| 307 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 308 |
+
sep="###",
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
simple_conv_mpt_multimodal = Conversation(
|
| 312 |
+
system="""<|im_start|>system
|
| 313 |
+
- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
|
| 314 |
+
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
| 315 |
+
- You should follow the instructions carefully and explain your answers in detail.""",
|
| 316 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 317 |
+
version="mpt",
|
| 318 |
+
messages=(),
|
| 319 |
+
offset=0,
|
| 320 |
+
sep_style=SeparatorStyle.MPT,
|
| 321 |
+
sep="<|im_end|>",
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
simple_conv_legacy = Conversation(
|
| 325 |
+
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
|
| 326 |
+
"You are designed to assist human with a variety of tasks using natural language."
|
| 327 |
+
"Follow the instructions carefully.",
|
| 328 |
+
roles=("Human", "Assistant"),
|
| 329 |
+
messages=(
|
| 330 |
+
("Human", "Hi!\n\n### Response:"),
|
| 331 |
+
("Assistant", "Hi there! How can I help you today?\n")
|
| 332 |
+
),
|
| 333 |
+
offset=2,
|
| 334 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 335 |
+
sep="###",
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
conv_llava_v1 = Conversation(
|
| 339 |
+
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
| 340 |
+
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
| 341 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
| 342 |
+
roles=("USER", "ASSISTANT"),
|
| 343 |
+
version="v1",
|
| 344 |
+
messages=(),
|
| 345 |
+
offset=0,
|
| 346 |
+
sep_style=SeparatorStyle.TWO,
|
| 347 |
+
sep=" ",
|
| 348 |
+
sep2="</s>",
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
default_conversation = conv_v1_2
|
| 352 |
+
conv_templates = {
|
| 353 |
+
"default": conv_v1_2,
|
| 354 |
+
"simple": simple_conv,
|
| 355 |
+
"simple_legacy": simple_conv_legacy,
|
| 356 |
+
"multimodal": simple_conv_multimodal,
|
| 357 |
+
"mpt_multimodal": simple_conv_mpt_multimodal,
|
| 358 |
+
"llava_v1": conv_llava_v1,
|
| 359 |
+
|
| 360 |
+
# fastchat
|
| 361 |
+
"v1": conv_v1_2,
|
| 362 |
+
"bair_v1": conv_bair_v1,
|
| 363 |
+
"vicuna_v1_1": conv_vicuna_v1_1,
|
| 364 |
+
"mpt": conv_mpt,
|
| 365 |
+
"mpt_text": conv_mpt_text,
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
if __name__ == "__main__":
|
| 370 |
+
print(default_conversation.get_prompt())
|
llava.py → mgie_llava.py
RENAMED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/model/llava.py
|
| 3 |
|
| 4 |
from typing import List, Optional, Tuple, Union
|
|
@@ -184,19 +187,19 @@ class LlavaLlamaModel(LlamaModel):
|
|
| 184 |
class EditMapper(nn.Module):
|
| 185 |
def __init__(self):
|
| 186 |
super().__init__()
|
| 187 |
-
|
| 188 |
self.llm2hid = nn.Linear(4096, 512)
|
| 189 |
self.query = nn.Parameter(torch.randn(1, 77, 512))
|
| 190 |
-
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
|
| 191 |
-
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
|
| 192 |
dim_feedforward=2048, dropout=0.0)
|
| 193 |
self.hid2feat = nn.Linear(512, 768)
|
| 194 |
-
|
| 195 |
def forward(self, llm, emb):
|
| 196 |
hid = self.llm2hid(llm+emb)
|
| 197 |
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
|
| 198 |
feat = self.hid2feat(hid)
|
| 199 |
-
|
| 200 |
return feat
|
| 201 |
|
| 202 |
class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
@@ -209,9 +212,9 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 209 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 210 |
|
| 211 |
self.edit_head = EditMapper()
|
| 212 |
-
|
| 213 |
-
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
|
| 214 |
-
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
|
| 215 |
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
|
| 216 |
self.vae.requires_grad_(False)
|
| 217 |
self.unet.register_to_config(in_channels=8)
|
|
@@ -220,7 +223,7 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 220 |
conv.weight.zero_()
|
| 221 |
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
|
| 222 |
self.unet.conv_in = conv'''
|
| 223 |
-
|
| 224 |
# Initialize weights and apply final processing
|
| 225 |
self.post_init()
|
| 226 |
|
|
@@ -236,7 +239,7 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 236 |
if type(vision_tower) is list:
|
| 237 |
vision_tower = vision_tower[0]
|
| 238 |
return vision_tower
|
| 239 |
-
|
| 240 |
def forward(
|
| 241 |
self,
|
| 242 |
input_ids: torch.LongTensor = None,
|
|
@@ -248,7 +251,7 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 248 |
output_attentions: Optional[bool] = None,
|
| 249 |
output_hidden_states: Optional[bool] = None,
|
| 250 |
images: Optional[torch.FloatTensor] = None,
|
| 251 |
-
return_dict: Optional[bool] = None,
|
| 252 |
p2p_inp=None, p2p_ans=None
|
| 253 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 254 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
@@ -297,13 +300,13 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 297 |
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
| 298 |
|
| 299 |
B, DROP = labels.shape[0], 0.05
|
| 300 |
-
|
| 301 |
-
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
|
| 302 |
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
| 303 |
|
| 304 |
with torch.no_grad():
|
| 305 |
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
|
| 306 |
-
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
|
| 307 |
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
|
| 308 |
|
| 309 |
noise = torch.randn_like(lat_ans)
|
|
@@ -317,15 +320,15 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 317 |
lat_inp *= mask
|
| 318 |
|
| 319 |
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
|
| 320 |
-
|
| 321 |
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
|
| 322 |
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
|
| 323 |
loss = loss_ce+loss_edit*0.5
|
| 324 |
-
|
| 325 |
if not return_dict:
|
| 326 |
output = (logits,) + outputs[1:]
|
| 327 |
return (loss,) + output if loss is not None else output
|
| 328 |
-
|
| 329 |
return CausalLMOutputWithPast(
|
| 330 |
loss=loss,
|
| 331 |
logits=logits,
|
|
@@ -371,7 +374,7 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
| 371 |
if num_new_tokens > 0:
|
| 372 |
input_embeddings = self.get_input_embeddings().weight.data
|
| 373 |
output_embeddings = self.get_output_embeddings().weight.data
|
| 374 |
-
|
| 375 |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
| 376 |
dim=0, keepdim=True)
|
| 377 |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# For licensing see accompanying LICENSE file.
|
| 3 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/model/llava.py
|
| 6 |
|
| 7 |
from typing import List, Optional, Tuple, Union
|
|
|
|
| 187 |
class EditMapper(nn.Module):
|
| 188 |
def __init__(self):
|
| 189 |
super().__init__()
|
| 190 |
+
|
| 191 |
self.llm2hid = nn.Linear(4096, 512)
|
| 192 |
self.query = nn.Parameter(torch.randn(1, 77, 512))
|
| 193 |
+
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
|
| 194 |
+
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
|
| 195 |
dim_feedforward=2048, dropout=0.0)
|
| 196 |
self.hid2feat = nn.Linear(512, 768)
|
| 197 |
+
|
| 198 |
def forward(self, llm, emb):
|
| 199 |
hid = self.llm2hid(llm+emb)
|
| 200 |
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
|
| 201 |
feat = self.hid2feat(hid)
|
| 202 |
+
|
| 203 |
return feat
|
| 204 |
|
| 205 |
class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
|
|
|
| 212 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 213 |
|
| 214 |
self.edit_head = EditMapper()
|
| 215 |
+
|
| 216 |
+
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
|
| 217 |
+
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
|
| 218 |
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
|
| 219 |
self.vae.requires_grad_(False)
|
| 220 |
self.unet.register_to_config(in_channels=8)
|
|
|
|
| 223 |
conv.weight.zero_()
|
| 224 |
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
|
| 225 |
self.unet.conv_in = conv'''
|
| 226 |
+
|
| 227 |
# Initialize weights and apply final processing
|
| 228 |
self.post_init()
|
| 229 |
|
|
|
|
| 239 |
if type(vision_tower) is list:
|
| 240 |
vision_tower = vision_tower[0]
|
| 241 |
return vision_tower
|
| 242 |
+
|
| 243 |
def forward(
|
| 244 |
self,
|
| 245 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 251 |
output_attentions: Optional[bool] = None,
|
| 252 |
output_hidden_states: Optional[bool] = None,
|
| 253 |
images: Optional[torch.FloatTensor] = None,
|
| 254 |
+
return_dict: Optional[bool] = None,
|
| 255 |
p2p_inp=None, p2p_ans=None
|
| 256 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 257 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
| 300 |
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
| 301 |
|
| 302 |
B, DROP = labels.shape[0], 0.05
|
| 303 |
+
|
| 304 |
+
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
|
| 305 |
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
| 306 |
|
| 307 |
with torch.no_grad():
|
| 308 |
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
|
| 309 |
+
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
|
| 310 |
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
|
| 311 |
|
| 312 |
noise = torch.randn_like(lat_ans)
|
|
|
|
| 320 |
lat_inp *= mask
|
| 321 |
|
| 322 |
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
|
| 323 |
+
|
| 324 |
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
|
| 325 |
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
|
| 326 |
loss = loss_ce+loss_edit*0.5
|
| 327 |
+
|
| 328 |
if not return_dict:
|
| 329 |
output = (logits,) + outputs[1:]
|
| 330 |
return (loss,) + output if loss is not None else output
|
| 331 |
+
|
| 332 |
return CausalLMOutputWithPast(
|
| 333 |
loss=loss,
|
| 334 |
logits=logits,
|
|
|
|
| 374 |
if num_new_tokens > 0:
|
| 375 |
input_embeddings = self.get_input_embeddings().weight.data
|
| 376 |
output_embeddings = self.get_output_embeddings().weight.data
|
| 377 |
+
|
| 378 |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
| 379 |
dim=0, keepdim=True)
|
| 380 |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
pre-requirements.txt
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
sentencepiece
|
| 2 |
-
transformers
|
| 3 |
diffusers
|
| 4 |
-
tokenizers
|
| 5 |
datasets
|
| 6 |
accelerate
|
| 7 |
evaluate
|
| 8 |
-
gradio
|
| 9 |
-
|
|
|
|
| 1 |
sentencepiece
|
| 2 |
+
git+https://github.com/huggingface/transformers.git@cae78c46
|
| 3 |
diffusers
|
| 4 |
+
tokenizers==0.12.1
|
| 5 |
datasets
|
| 6 |
accelerate
|
| 7 |
evaluate
|
| 8 |
+
gradio==4.12.0
|
| 9 |
+
gradio_client==0.8.0
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
-i https://download.pytorch.org/whl/
|
| 2 |
-
torch==
|
| 3 |
-
torchvision==0.
|
| 4 |
-
torchaudio==
|
|
|
|
| 1 |
+
-i https://download.pytorch.org/whl/cu118
|
| 2 |
+
torch==2.0
|
| 3 |
+
torchvision==0.15
|
| 4 |
+
torchaudio==2.0
|
train.py
DELETED
|
@@ -1,831 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/train/train.py
|
| 3 |
-
|
| 4 |
-
import os
|
| 5 |
-
import copy
|
| 6 |
-
from dataclasses import dataclass, field
|
| 7 |
-
import json
|
| 8 |
-
import logging
|
| 9 |
-
import pathlib
|
| 10 |
-
from typing import Dict, Optional, Sequence, List
|
| 11 |
-
|
| 12 |
-
import torch
|
| 13 |
-
|
| 14 |
-
import transformers
|
| 15 |
-
from torch.utils.data import Dataset
|
| 16 |
-
from llava.train.llava_trainer import LLaVATrainer
|
| 17 |
-
|
| 18 |
-
from llava import conversation as conversation_lib
|
| 19 |
-
from llava.model import *
|
| 20 |
-
|
| 21 |
-
from PIL import Image
|
| 22 |
-
import torch.nn as nn
|
| 23 |
-
|
| 24 |
-
# TODO: import and use code from ../data/dataset.py
|
| 25 |
-
|
| 26 |
-
IGNORE_INDEX = -100
|
| 27 |
-
DEFAULT_PAD_TOKEN = "[PAD]"
|
| 28 |
-
DEFAULT_EOS_TOKEN = "</s>"
|
| 29 |
-
DEFAULT_BOS_TOKEN = "<s>"
|
| 30 |
-
DEFAULT_UNK_TOKEN = "<unk>"
|
| 31 |
-
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 32 |
-
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
| 33 |
-
DEFAULT_IM_START_TOKEN = "<im_start>"
|
| 34 |
-
DEFAULT_IM_END_TOKEN = "<im_end>"
|
| 35 |
-
|
| 36 |
-
import io, base64, pickle, random
|
| 37 |
-
from tqdm import tqdm
|
| 38 |
-
import numpy as np
|
| 39 |
-
|
| 40 |
-
def b2f(b): return Image.open(io.BytesIO(base64.b64decode(b))).convert('RGB')
|
| 41 |
-
def resize(f):
|
| 42 |
-
w, h = f.size
|
| 43 |
-
if w>h:
|
| 44 |
-
p = (w-h)//2
|
| 45 |
-
f = f.crop([p, 0, p+h, h])
|
| 46 |
-
elif h>w:
|
| 47 |
-
p = (h-w)//2
|
| 48 |
-
f = f.crop([0, p, w, p+w])
|
| 49 |
-
f = f.resize([512, 512])
|
| 50 |
-
return f
|
| 51 |
-
def img2npy(f): return (2.0*np.array(f)/255.0-1.0).transpose((2, 0, 1)).astype(np.float32)
|
| 52 |
-
|
| 53 |
-
@dataclass
|
| 54 |
-
class ModelArguments:
|
| 55 |
-
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
| 56 |
-
version: Optional[str] = field(default="v0")
|
| 57 |
-
freeze_backbone: bool = field(default=False)
|
| 58 |
-
tune_mm_mlp_adapter: bool = field(default=False)
|
| 59 |
-
vision_tower: Optional[str] = field(default=None)
|
| 60 |
-
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
|
| 61 |
-
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
| 62 |
-
mm_use_im_start_end: bool = field(default=False)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
@dataclass
|
| 66 |
-
class DataArguments:
|
| 67 |
-
data_path: str = field(default=None,
|
| 68 |
-
metadata={"help": "Path to the training data."})
|
| 69 |
-
lazy_preprocess: bool = False
|
| 70 |
-
is_multimodal: bool = False
|
| 71 |
-
sep_image_conv_front: bool = False
|
| 72 |
-
image_token_len: int = 0
|
| 73 |
-
image_folder: Optional[str] = field(default=None)
|
| 74 |
-
image_aspect_ratio: str = 'square'
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
@dataclass
|
| 78 |
-
class TrainingArguments(transformers.TrainingArguments):
|
| 79 |
-
cache_dir: Optional[str] = field(default=None)
|
| 80 |
-
optim: str = field(default="adamw_torch")
|
| 81 |
-
remove_unused_columns: bool = field(default=False)
|
| 82 |
-
freeze_mm_mlp_adapter: bool = field(default=False)
|
| 83 |
-
force_fsdp: bool = field(default=False)
|
| 84 |
-
model_max_length: int = field(
|
| 85 |
-
default=512,
|
| 86 |
-
metadata={
|
| 87 |
-
"help":
|
| 88 |
-
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
| 89 |
-
},
|
| 90 |
-
)
|
| 91 |
-
double_quant: bool = field(
|
| 92 |
-
default=True,
|
| 93 |
-
metadata={"help": "Compress the quantization statistics through double quantization."}
|
| 94 |
-
)
|
| 95 |
-
quant_type: str = field(
|
| 96 |
-
default="nf4",
|
| 97 |
-
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
| 98 |
-
)
|
| 99 |
-
bits: int = field(
|
| 100 |
-
default=16,
|
| 101 |
-
metadata={"help": "How many bits to use."}
|
| 102 |
-
)
|
| 103 |
-
lora_enable: bool = False
|
| 104 |
-
lora_r: int = 64
|
| 105 |
-
lora_alpha: int = 16
|
| 106 |
-
lora_dropout: float = 0.05
|
| 107 |
-
lora_weight_path: str = ""
|
| 108 |
-
lora_bias: str = "none"
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
def maybe_zero_3(param, ignore_status=False, name=None):
|
| 112 |
-
from deepspeed import zero
|
| 113 |
-
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
| 114 |
-
if hasattr(param, "ds_id"):
|
| 115 |
-
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
| 116 |
-
if not ignore_status:
|
| 117 |
-
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
| 118 |
-
with zero.GatheredParameters([param]):
|
| 119 |
-
param = param.data.detach().cpu().clone()
|
| 120 |
-
else:
|
| 121 |
-
param = param.detach().cpu().clone()
|
| 122 |
-
return param
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# Borrowed from peft.utils.get_peft_model_state_dict
|
| 126 |
-
def get_peft_state_maybe_zero_3(named_params, bias):
|
| 127 |
-
if bias == "none":
|
| 128 |
-
to_return = {k: t for k, t in named_params if "lora_" in k}
|
| 129 |
-
elif bias == "all":
|
| 130 |
-
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
| 131 |
-
elif bias == "lora_only":
|
| 132 |
-
to_return = {}
|
| 133 |
-
maybe_lora_bias = {}
|
| 134 |
-
lora_bias_names = set()
|
| 135 |
-
for k, t in named_params:
|
| 136 |
-
if "lora_" in k:
|
| 137 |
-
to_return[k] = t
|
| 138 |
-
bias_name = k.split("lora_")[0] + "bias"
|
| 139 |
-
lora_bias_names.add(bias_name)
|
| 140 |
-
elif "bias" in k:
|
| 141 |
-
maybe_lora_bias[k] = t
|
| 142 |
-
for k, t in maybe_lora_bias:
|
| 143 |
-
if bias_name in lora_bias_names:
|
| 144 |
-
to_return[bias_name] = t
|
| 145 |
-
else:
|
| 146 |
-
raise NotImplementedError
|
| 147 |
-
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()}
|
| 148 |
-
return to_return
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
| 152 |
-
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
| 153 |
-
if require_grad_only:
|
| 154 |
-
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
| 155 |
-
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
| 156 |
-
return to_return
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def find_all_linear_names(model):
|
| 160 |
-
cls = torch.nn.Linear
|
| 161 |
-
lora_module_names = set()
|
| 162 |
-
for name, module in model.named_modules():
|
| 163 |
-
if isinstance(module, cls):
|
| 164 |
-
names = name.split('.')
|
| 165 |
-
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
if 'lm_head' in lora_module_names: # needed for 16-bit
|
| 169 |
-
lora_module_names.remove('lm_head')
|
| 170 |
-
return list(lora_module_names)
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
| 174 |
-
output_dir: str):
|
| 175 |
-
"""Collects the state dict and dump to disk."""
|
| 176 |
-
if trainer.deepspeed:
|
| 177 |
-
torch.cuda.synchronize()
|
| 178 |
-
trainer.save_model(output_dir)
|
| 179 |
-
return
|
| 180 |
-
|
| 181 |
-
state_dict = trainer.model.state_dict()
|
| 182 |
-
if trainer.args.should_save:
|
| 183 |
-
cpu_state_dict = {
|
| 184 |
-
key: value.cpu()
|
| 185 |
-
for key, value in state_dict.items()
|
| 186 |
-
}
|
| 187 |
-
del state_dict
|
| 188 |
-
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
def smart_tokenizer_and_embedding_resize(
|
| 192 |
-
special_tokens_dict: Dict,
|
| 193 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 194 |
-
model: transformers.PreTrainedModel,
|
| 195 |
-
):
|
| 196 |
-
"""Resize tokenizer and embedding.
|
| 197 |
-
|
| 198 |
-
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
| 199 |
-
"""
|
| 200 |
-
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
| 201 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 202 |
-
|
| 203 |
-
if num_new_tokens > 0:
|
| 204 |
-
input_embeddings = model.get_input_embeddings().weight.data
|
| 205 |
-
output_embeddings = model.get_output_embeddings().weight.data
|
| 206 |
-
|
| 207 |
-
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
| 208 |
-
dim=0, keepdim=True)
|
| 209 |
-
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
| 210 |
-
dim=0, keepdim=True)
|
| 211 |
-
|
| 212 |
-
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
| 213 |
-
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
def _tokenize_fn(strings: Sequence[str],
|
| 217 |
-
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
| 218 |
-
"""Tokenize a list of strings."""
|
| 219 |
-
tokenized_list = [
|
| 220 |
-
tokenizer(
|
| 221 |
-
text,
|
| 222 |
-
return_tensors="pt",
|
| 223 |
-
padding="longest",
|
| 224 |
-
max_length=tokenizer.model_max_length,
|
| 225 |
-
truncation=True,
|
| 226 |
-
) for text in strings
|
| 227 |
-
]
|
| 228 |
-
input_ids = labels = [
|
| 229 |
-
tokenized.input_ids[0] for tokenized in tokenized_list
|
| 230 |
-
]
|
| 231 |
-
input_ids_lens = labels_lens = [
|
| 232 |
-
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
| 233 |
-
for tokenized in tokenized_list
|
| 234 |
-
]
|
| 235 |
-
return dict(
|
| 236 |
-
input_ids=input_ids,
|
| 237 |
-
labels=labels,
|
| 238 |
-
input_ids_lens=input_ids_lens,
|
| 239 |
-
labels_lens=labels_lens,
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
def _mask_targets(target, tokenized_lens, speakers):
|
| 244 |
-
# cur_idx = 0
|
| 245 |
-
cur_idx = tokenized_lens[0]
|
| 246 |
-
tokenized_lens = tokenized_lens[1:]
|
| 247 |
-
target[:cur_idx] = IGNORE_INDEX
|
| 248 |
-
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
| 249 |
-
if speaker == "human":
|
| 250 |
-
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
| 251 |
-
cur_idx += tokenized_len
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
def _add_speaker_and_signal(header, source, get_conversation=True):
|
| 255 |
-
"""Add speaker and start/end signal on each round."""
|
| 256 |
-
BEGIN_SIGNAL = "### "
|
| 257 |
-
END_SIGNAL = "\n"
|
| 258 |
-
conversation = header
|
| 259 |
-
for sentence in source:
|
| 260 |
-
from_str = sentence["from"]
|
| 261 |
-
if from_str.lower() == "human":
|
| 262 |
-
from_str = conversation_lib.default_conversation.roles[0]
|
| 263 |
-
elif from_str.lower() == "gpt":
|
| 264 |
-
from_str = conversation_lib.default_conversation.roles[1]
|
| 265 |
-
else:
|
| 266 |
-
from_str = 'unknown'
|
| 267 |
-
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
| 268 |
-
sentence["value"] + END_SIGNAL)
|
| 269 |
-
if get_conversation:
|
| 270 |
-
conversation += sentence["value"]
|
| 271 |
-
conversation += BEGIN_SIGNAL
|
| 272 |
-
return conversation
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
def preprocess_multimodal(
|
| 276 |
-
sources: Sequence[str],
|
| 277 |
-
multimodal_cfg: dict,
|
| 278 |
-
cur_token_len: int,
|
| 279 |
-
) -> Dict:
|
| 280 |
-
is_multimodal = multimodal_cfg['is_multimodal']
|
| 281 |
-
# image_token_len = multimodal_cfg['image_token_len']
|
| 282 |
-
image_token_len = cur_token_len
|
| 283 |
-
if not is_multimodal:
|
| 284 |
-
return sources
|
| 285 |
-
|
| 286 |
-
for source in sources:
|
| 287 |
-
if multimodal_cfg['sep_image_conv_front']:
|
| 288 |
-
assert DEFAULT_IMAGE_TOKEN in source[0]['value']
|
| 289 |
-
source[0]['value'] = source[0]['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
|
| 290 |
-
source[0]['value'] = DEFAULT_IMAGE_TOKEN + conversation_lib.default_conversation.sep + conversation_lib.default_conversation.roles[0] + ": " + source[0]['value']
|
| 291 |
-
for sentence in source:
|
| 292 |
-
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
| 293 |
-
if multimodal_cfg['use_im_start_end']:
|
| 294 |
-
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
| 295 |
-
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
| 296 |
-
|
| 297 |
-
return sources
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
def preprocess_v1(
|
| 301 |
-
sources,
|
| 302 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 303 |
-
) -> Dict:
|
| 304 |
-
conv = conversation_lib.default_conversation.copy()
|
| 305 |
-
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
| 306 |
-
|
| 307 |
-
# Apply prompt templates
|
| 308 |
-
conversations = []
|
| 309 |
-
for i, source in enumerate(sources):
|
| 310 |
-
if roles[source[0]["from"]] != conv.roles[0]:
|
| 311 |
-
# Skip the first one if it is not from human
|
| 312 |
-
source = source[1:]
|
| 313 |
-
|
| 314 |
-
conv.messages = []
|
| 315 |
-
for j, sentence in enumerate(source):
|
| 316 |
-
role = roles[sentence["from"]]
|
| 317 |
-
assert role == conv.roles[j % 2], f"{i}"
|
| 318 |
-
conv.append_message(role, sentence["value"])
|
| 319 |
-
conversations.append(conv.get_prompt())
|
| 320 |
-
|
| 321 |
-
# Tokenize conversations
|
| 322 |
-
input_ids = tokenizer(
|
| 323 |
-
conversations,
|
| 324 |
-
return_tensors="pt",
|
| 325 |
-
padding="longest",
|
| 326 |
-
max_length=tokenizer.model_max_length,
|
| 327 |
-
truncation=True,
|
| 328 |
-
).input_ids
|
| 329 |
-
targets = input_ids.clone()
|
| 330 |
-
|
| 331 |
-
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
|
| 332 |
-
|
| 333 |
-
# Mask targets
|
| 334 |
-
sep = conv.sep + conv.roles[1] + ": "
|
| 335 |
-
for conversation, target in zip(conversations, targets):
|
| 336 |
-
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
| 337 |
-
|
| 338 |
-
rounds = conversation.split(conv.sep2)
|
| 339 |
-
cur_len = 1
|
| 340 |
-
target[:cur_len] = IGNORE_INDEX
|
| 341 |
-
for i, rou in enumerate(rounds):
|
| 342 |
-
if rou == "":
|
| 343 |
-
break
|
| 344 |
-
|
| 345 |
-
parts = rou.split(sep)
|
| 346 |
-
if len(parts) != 2:
|
| 347 |
-
break
|
| 348 |
-
parts[0] += sep
|
| 349 |
-
round_len = len(tokenizer(rou).input_ids)
|
| 350 |
-
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
| 351 |
-
|
| 352 |
-
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
| 353 |
-
|
| 354 |
-
cur_len += round_len
|
| 355 |
-
target[cur_len:] = IGNORE_INDEX
|
| 356 |
-
|
| 357 |
-
if cur_len < tokenizer.model_max_length:
|
| 358 |
-
if cur_len != total_len:
|
| 359 |
-
target[:] = IGNORE_INDEX
|
| 360 |
-
print(
|
| 361 |
-
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
| 362 |
-
f" (ignored)"
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
return dict(
|
| 366 |
-
input_ids=input_ids,
|
| 367 |
-
labels=targets,
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
def preprocess_mpt(
|
| 371 |
-
sources,
|
| 372 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 373 |
-
) -> Dict:
|
| 374 |
-
conv = conversation_lib.default_conversation.copy()
|
| 375 |
-
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
| 376 |
-
|
| 377 |
-
# Apply prompt templates
|
| 378 |
-
conversations = []
|
| 379 |
-
for i, source in enumerate(sources):
|
| 380 |
-
if roles[source[0]["from"]] != conv.roles[0]:
|
| 381 |
-
# Skip the first one if it is not from human
|
| 382 |
-
source = source[1:]
|
| 383 |
-
|
| 384 |
-
conv.messages = []
|
| 385 |
-
for j, sentence in enumerate(source):
|
| 386 |
-
role = roles[sentence["from"]]
|
| 387 |
-
assert role == conv.roles[j % 2], f"{i}"
|
| 388 |
-
conv.append_message(role, sentence["value"])
|
| 389 |
-
conversations.append(conv.get_prompt())
|
| 390 |
-
|
| 391 |
-
# Tokenize conversations
|
| 392 |
-
input_ids = tokenizer(
|
| 393 |
-
conversations,
|
| 394 |
-
return_tensors="pt",
|
| 395 |
-
padding="longest",
|
| 396 |
-
max_length=tokenizer.model_max_length,
|
| 397 |
-
truncation=True,
|
| 398 |
-
).input_ids
|
| 399 |
-
targets = input_ids.clone()
|
| 400 |
-
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT
|
| 401 |
-
|
| 402 |
-
# Mask targets
|
| 403 |
-
sep = conv.sep + conv.roles[1]
|
| 404 |
-
for conversation, target in zip(conversations, targets):
|
| 405 |
-
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
| 406 |
-
|
| 407 |
-
rounds = conversation.split(conv.sep)
|
| 408 |
-
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt
|
| 409 |
-
for conv_idx in range(3, len(rounds), 2):
|
| 410 |
-
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt
|
| 411 |
-
cur_len = 0
|
| 412 |
-
target[:cur_len] = IGNORE_INDEX
|
| 413 |
-
for i, rou in enumerate(re_rounds):
|
| 414 |
-
if rou == "":
|
| 415 |
-
break
|
| 416 |
-
|
| 417 |
-
parts = rou.split(sep)
|
| 418 |
-
if len(parts) != 2:
|
| 419 |
-
break
|
| 420 |
-
parts[0] += sep
|
| 421 |
-
round_len = len(tokenizer(rou).input_ids) + len(tokenizer(conv.sep).input_ids)
|
| 422 |
-
instruction_len = len(tokenizer(parts[0]).input_ids)
|
| 423 |
-
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
| 424 |
-
|
| 425 |
-
cur_len += round_len
|
| 426 |
-
target[cur_len:] = IGNORE_INDEX
|
| 427 |
-
|
| 428 |
-
if cur_len < tokenizer.model_max_length:
|
| 429 |
-
if cur_len != total_len:
|
| 430 |
-
target[:] = IGNORE_INDEX
|
| 431 |
-
print(
|
| 432 |
-
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
| 433 |
-
f" (ignored)"
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
return dict(
|
| 437 |
-
input_ids=input_ids,
|
| 438 |
-
labels=targets,
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
def preprocess(
|
| 443 |
-
sources: Sequence[str],
|
| 444 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 445 |
-
) -> Dict:
|
| 446 |
-
"""
|
| 447 |
-
Given a list of sources, each is a conversation list. This transform:
|
| 448 |
-
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 449 |
-
2. Concatenate conversations together;
|
| 450 |
-
3. Tokenize the concatenated conversation;
|
| 451 |
-
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 452 |
-
"""
|
| 453 |
-
if conversation_lib.default_conversation.version == "v1":
|
| 454 |
-
return preprocess_v1(sources, tokenizer)
|
| 455 |
-
if conversation_lib.default_conversation.version == "mpt":
|
| 456 |
-
return preprocess_mpt(sources, tokenizer)
|
| 457 |
-
# add end signal and concatenate together
|
| 458 |
-
conversations = []
|
| 459 |
-
for source in sources:
|
| 460 |
-
header = f"{conversation_lib.default_conversation.system}\n\n"
|
| 461 |
-
conversation = _add_speaker_and_signal(header, source)
|
| 462 |
-
conversations.append(conversation)
|
| 463 |
-
# tokenize conversations
|
| 464 |
-
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
| 465 |
-
input_ids = conversations_tokenized["input_ids"]
|
| 466 |
-
targets = copy.deepcopy(input_ids)
|
| 467 |
-
for target, source in zip(targets, sources):
|
| 468 |
-
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
| 469 |
-
tokenizer)["input_ids_lens"]
|
| 470 |
-
speakers = [sentence["from"] for sentence in source]
|
| 471 |
-
_mask_targets(target, tokenized_lens, speakers)
|
| 472 |
-
|
| 473 |
-
return dict(input_ids=input_ids, labels=targets)
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
class SupervisedDataset(Dataset):
|
| 477 |
-
"""Dataset for supervised fine-tuning."""
|
| 478 |
-
|
| 479 |
-
def __init__(self, data_path: str,
|
| 480 |
-
tokenizer: transformers.PreTrainedTokenizer):
|
| 481 |
-
super(SupervisedDataset, self).__init__()
|
| 482 |
-
logging.warning("Loading data...")
|
| 483 |
-
list_data_dict = json.load(open(data_path, "r"))
|
| 484 |
-
|
| 485 |
-
logging.warning("Formatting inputs...")
|
| 486 |
-
sources = [example["conversations"] for example in list_data_dict]
|
| 487 |
-
data_dict = preprocess(sources, tokenizer)
|
| 488 |
-
|
| 489 |
-
self.input_ids = data_dict["input_ids"]
|
| 490 |
-
self.labels = data_dict["labels"]
|
| 491 |
-
|
| 492 |
-
def __len__(self):
|
| 493 |
-
return len(self.input_ids)
|
| 494 |
-
|
| 495 |
-
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
| 496 |
-
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
class LazySupervisedDataset(Dataset):
|
| 500 |
-
|
| 501 |
-
def __init__(self, data_path: str,
|
| 502 |
-
tokenizer: transformers.PreTrainedTokenizer,
|
| 503 |
-
multimodal_cfg: dict):
|
| 504 |
-
super(LazySupervisedDataset, self).__init__()
|
| 505 |
-
|
| 506 |
-
self.tokenizer, self.multimodal_cfg = tokenizer, multimodal_cfg
|
| 507 |
-
|
| 508 |
-
self.pkl, self.prompt = pickle.load(open('./_data/ipr2pr.pkl', 'rb'))['task'], json.load(open('./_data/ipr2pr_expressive.json', 'r'))
|
| 509 |
-
random.shuffle(self.pkl)
|
| 510 |
-
print('--pkl: %d--'%(len(self.pkl)))
|
| 511 |
-
|
| 512 |
-
def __len__(self):
|
| 513 |
-
return len(self.pkl)
|
| 514 |
-
|
| 515 |
-
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
| 516 |
-
item = self.pkl[i][0]
|
| 517 |
-
|
| 518 |
-
tsv = open('./_data/ipr2pr.tsv', 'r')
|
| 519 |
-
tsv.seek(item['lineidx'])
|
| 520 |
-
b = tsv.readline().strip().split('\t')
|
| 521 |
-
image = resize(b2f(b[0]))
|
| 522 |
-
|
| 523 |
-
processor = self.multimodal_cfg['image_processor']
|
| 524 |
-
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 525 |
-
|
| 526 |
-
cur_token_len = (image.shape[1]//14)*(image.shape[2]//14)
|
| 527 |
-
query = "what will this image be like if '%s'\n%s"%(item['instruction'], DEFAULT_IMAGE_TOKEN)
|
| 528 |
-
ans = '%s [IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]'%(self.prompt[item['input']]['expressive'])
|
| 529 |
-
sources = preprocess_multimodal(copy.deepcopy([[{'from': 'human', 'value': query}, {'from': 'gpt', 'value': ans}]]),
|
| 530 |
-
self.multimodal_cfg, cur_token_len)
|
| 531 |
-
|
| 532 |
-
data_dict = preprocess(sources, self.tokenizer)
|
| 533 |
-
if isinstance(i, int): data_dict = dict(input_ids=data_dict['input_ids'][0],
|
| 534 |
-
labels=data_dict['labels'][0])
|
| 535 |
-
data_dict['image'] = image
|
| 536 |
-
|
| 537 |
-
p2p_inp, p2p_ans = img2npy(resize(b2f(b[0])).resize([256, 256])), img2npy(resize(b2f(b[1])).resize([256, 256]))
|
| 538 |
-
data_dict['p2p_inp'], data_dict['p2p_ans'] = p2p_inp, p2p_ans
|
| 539 |
-
|
| 540 |
-
return data_dict
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
@dataclass
|
| 544 |
-
class DataCollatorForSupervisedDataset(object):
|
| 545 |
-
"""Collate examples for supervised fine-tuning."""
|
| 546 |
-
|
| 547 |
-
tokenizer: transformers.PreTrainedTokenizer
|
| 548 |
-
|
| 549 |
-
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
| 550 |
-
input_ids, labels = tuple([instance[key] for instance in instances]
|
| 551 |
-
for key in ("input_ids", "labels"))
|
| 552 |
-
input_ids = torch.nn.utils.rnn.pad_sequence(
|
| 553 |
-
input_ids,
|
| 554 |
-
batch_first=True,
|
| 555 |
-
padding_value=self.tokenizer.pad_token_id)
|
| 556 |
-
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
| 557 |
-
batch_first=True,
|
| 558 |
-
padding_value=IGNORE_INDEX)
|
| 559 |
-
batch = dict(
|
| 560 |
-
input_ids=input_ids,
|
| 561 |
-
labels=labels,
|
| 562 |
-
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
| 563 |
-
)
|
| 564 |
-
|
| 565 |
-
if 'image' in instances[0]:
|
| 566 |
-
images = [instance['image'] for instance in instances]
|
| 567 |
-
if all(x is not None and x.shape == images[0].shape for x in images):
|
| 568 |
-
batch['images'] = torch.stack(images)
|
| 569 |
-
else:
|
| 570 |
-
batch['images'] = images
|
| 571 |
-
|
| 572 |
-
batch['p2p_inp'], batch['p2p_ans'] = [torch.cat([torch.from_numpy(d['p2p_inp']).unsqueeze(dim=0) for d in instances], dim=0),
|
| 573 |
-
torch.cat([torch.from_numpy(d['p2p_ans']).unsqueeze(dim=0) for d in instances], dim=0)]
|
| 574 |
-
|
| 575 |
-
return batch
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
| 579 |
-
data_args) -> Dict:
|
| 580 |
-
"""Make dataset and collator for supervised fine-tuning."""
|
| 581 |
-
dataset_cls = (LazySupervisedDataset
|
| 582 |
-
if data_args.lazy_preprocess else SupervisedDataset)
|
| 583 |
-
train_dataset = dataset_cls(tokenizer=tokenizer,
|
| 584 |
-
data_path=data_args.data_path,
|
| 585 |
-
multimodal_cfg=dict(
|
| 586 |
-
is_multimodal=data_args.is_multimodal,
|
| 587 |
-
sep_image_conv_front=data_args.sep_image_conv_front,
|
| 588 |
-
image_token_len=data_args.image_token_len,
|
| 589 |
-
image_folder=data_args.image_folder,
|
| 590 |
-
image_aspect_ratio=data_args.image_aspect_ratio,
|
| 591 |
-
use_im_start_end=getattr(data_args, 'mm_use_im_start_end', False),
|
| 592 |
-
image_processor=getattr(data_args, 'image_processor', None)))
|
| 593 |
-
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
| 594 |
-
return dict(train_dataset=train_dataset,
|
| 595 |
-
eval_dataset=None,
|
| 596 |
-
data_collator=data_collator)
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
def train():
|
| 600 |
-
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
| 601 |
-
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 602 |
-
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
| 603 |
-
|
| 604 |
-
bnb_model_from_pretrained_args = {}
|
| 605 |
-
if training_args.bits in [4, 8]:
|
| 606 |
-
from transformers import BitsAndBytesConfig
|
| 607 |
-
from peft import prepare_model_for_int8_training
|
| 608 |
-
bnb_model_from_pretrained_args.update(dict(
|
| 609 |
-
device_map={"": training_args.device},
|
| 610 |
-
load_in_4bit=training_args.bits == 4,
|
| 611 |
-
load_in_8bit=training_args.bits == 8,
|
| 612 |
-
quantization_config=BitsAndBytesConfig(
|
| 613 |
-
load_in_4bit=training_args.bits == 4,
|
| 614 |
-
load_in_8bit=training_args.bits == 8,
|
| 615 |
-
llm_int8_threshold=6.0,
|
| 616 |
-
llm_int8_has_fp16_weight=False,
|
| 617 |
-
bnb_4bit_compute_dtype=compute_dtype,
|
| 618 |
-
bnb_4bit_use_double_quant=training_args.double_quant,
|
| 619 |
-
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
|
| 620 |
-
)
|
| 621 |
-
))
|
| 622 |
-
|
| 623 |
-
if model_args.vision_tower is not None:
|
| 624 |
-
if 'mpt' in model_args.model_name_or_path:
|
| 625 |
-
model = LlavaMPTForCausalLM.from_pretrained(
|
| 626 |
-
model_args.model_name_or_path,
|
| 627 |
-
cache_dir=training_args.cache_dir,
|
| 628 |
-
**bnb_model_from_pretrained_args
|
| 629 |
-
)
|
| 630 |
-
else:
|
| 631 |
-
model = LlavaLlamaForCausalLM.from_pretrained(
|
| 632 |
-
model_args.model_name_or_path,
|
| 633 |
-
cache_dir=training_args.cache_dir,
|
| 634 |
-
**bnb_model_from_pretrained_args
|
| 635 |
-
)
|
| 636 |
-
else:
|
| 637 |
-
model = transformers.LlamaForCausalLM.from_pretrained(
|
| 638 |
-
model_args.model_name_or_path,
|
| 639 |
-
cache_dir=training_args.cache_dir,
|
| 640 |
-
**bnb_model_from_pretrained_args
|
| 641 |
-
)
|
| 642 |
-
model.config.use_cache = False
|
| 643 |
-
|
| 644 |
-
if model_args.freeze_backbone:
|
| 645 |
-
model.model.requires_grad_(False)
|
| 646 |
-
|
| 647 |
-
if training_args.bits in [4, 8]:
|
| 648 |
-
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
| 649 |
-
model = prepare_model_for_int8_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
| 650 |
-
|
| 651 |
-
if training_args.gradient_checkpointing and model_args.vision_tower is None:
|
| 652 |
-
if hasattr(model, "enable_input_require_grads"):
|
| 653 |
-
model.enable_input_require_grads()
|
| 654 |
-
else:
|
| 655 |
-
def make_inputs_require_grad(module, input, output):
|
| 656 |
-
output.requires_grad_(True)
|
| 657 |
-
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
| 658 |
-
|
| 659 |
-
if training_args.lora_enable:
|
| 660 |
-
from peft import LoraConfig, get_peft_model
|
| 661 |
-
lora_config = LoraConfig(
|
| 662 |
-
r=training_args.lora_r,
|
| 663 |
-
lora_alpha=training_args.lora_alpha,
|
| 664 |
-
target_modules=find_all_linear_names(model),
|
| 665 |
-
lora_dropout=training_args.lora_dropout,
|
| 666 |
-
bias=training_args.lora_bias,
|
| 667 |
-
task_type="CAUSAL_LM",
|
| 668 |
-
)
|
| 669 |
-
if training_args.bits == 16:
|
| 670 |
-
if training_args.bf16:
|
| 671 |
-
model.to(torch.bfloat16)
|
| 672 |
-
if training_args.fp16:
|
| 673 |
-
model.to(torch.float16)
|
| 674 |
-
logging.warning("Adding LoRA adapters...")
|
| 675 |
-
model = get_peft_model(model, lora_config)
|
| 676 |
-
|
| 677 |
-
if 'mpt' in model_args.model_name_or_path:
|
| 678 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 679 |
-
model_args.model_name_or_path,
|
| 680 |
-
cache_dir=training_args.cache_dir,
|
| 681 |
-
model_max_length=training_args.model_max_length,
|
| 682 |
-
padding_side="right"
|
| 683 |
-
)
|
| 684 |
-
else:
|
| 685 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 686 |
-
model_args.model_name_or_path,
|
| 687 |
-
cache_dir=training_args.cache_dir,
|
| 688 |
-
model_max_length=training_args.model_max_length,
|
| 689 |
-
padding_side="right",
|
| 690 |
-
use_fast=False,
|
| 691 |
-
)
|
| 692 |
-
|
| 693 |
-
if model_args.version == "v0":
|
| 694 |
-
if tokenizer.pad_token is None:
|
| 695 |
-
smart_tokenizer_and_embedding_resize(
|
| 696 |
-
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
| 697 |
-
tokenizer=tokenizer,
|
| 698 |
-
model=model,
|
| 699 |
-
)
|
| 700 |
-
if "llama" in model_args.model_name_or_path:
|
| 701 |
-
tokenizer.add_special_tokens({
|
| 702 |
-
"eos_token": DEFAULT_EOS_TOKEN,
|
| 703 |
-
"bos_token": DEFAULT_BOS_TOKEN,
|
| 704 |
-
"unk_token": DEFAULT_UNK_TOKEN,
|
| 705 |
-
})
|
| 706 |
-
else:
|
| 707 |
-
tokenizer.pad_token = tokenizer.unk_token
|
| 708 |
-
if "mpt" in model_args.model_name_or_path:
|
| 709 |
-
conversation_lib.default_conversation = conversation_lib.conv_templates["mpt"]
|
| 710 |
-
else:
|
| 711 |
-
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1_1"]
|
| 712 |
-
|
| 713 |
-
if model_args.vision_tower is not None:
|
| 714 |
-
model_vision_dict = model.get_model().initialize_vision_modules(
|
| 715 |
-
vision_tower=model_args.vision_tower,
|
| 716 |
-
mm_vision_select_layer=model_args.mm_vision_select_layer,
|
| 717 |
-
pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter,
|
| 718 |
-
fsdp=training_args.fsdp
|
| 719 |
-
)
|
| 720 |
-
model.get_vision_tower().to(dtype=torch.float16, device=training_args.device)
|
| 721 |
-
vision_config = model_vision_dict['vision_config']
|
| 722 |
-
|
| 723 |
-
data_args.image_token_len = model_vision_dict['image_token_len']
|
| 724 |
-
data_args.image_processor = model_vision_dict['image_processor']
|
| 725 |
-
data_args.is_multimodal = True
|
| 726 |
-
|
| 727 |
-
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
| 728 |
-
if model_args.tune_mm_mlp_adapter:
|
| 729 |
-
model.requires_grad_(False)
|
| 730 |
-
for p in model.get_model().mm_projector.parameters():
|
| 731 |
-
p.requires_grad = True
|
| 732 |
-
|
| 733 |
-
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
| 734 |
-
if training_args.freeze_mm_mlp_adapter:
|
| 735 |
-
for p in model.get_model().mm_projector.parameters():
|
| 736 |
-
p.requires_grad = False
|
| 737 |
-
|
| 738 |
-
if training_args.bits in [4, 8]:
|
| 739 |
-
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
|
| 740 |
-
|
| 741 |
-
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
| 742 |
-
vision_config.use_im_start_end = training_args.use_im_start_end = model_args.mm_use_im_start_end
|
| 743 |
-
model.config.sep_image_conv_front = data_args.sep_image_conv_front
|
| 744 |
-
model.initialize_vision_tokenizer(mm_use_im_start_end=model_args.mm_use_im_start_end, tokenizer=tokenizer, device=training_args.device,
|
| 745 |
-
tune_mm_mlp_adapter=model_args.tune_mm_mlp_adapter, pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter)
|
| 746 |
-
|
| 747 |
-
params_no_grad = [n for n, p in model.named_parameters() if not p.requires_grad]
|
| 748 |
-
if len(params_no_grad) > 0:
|
| 749 |
-
if training_args.fsdp is not None and len(training_args.fsdp) > 0:
|
| 750 |
-
if len(params_no_grad) < 10:
|
| 751 |
-
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}'. format(len(params_no_grad), params_no_grad))
|
| 752 |
-
else:
|
| 753 |
-
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}...(omitted)'. format(len(params_no_grad), ', '.join(params_no_grad[:10])))
|
| 754 |
-
print("[WARNING] Attempting to use FSDP with partially frozen paramters, this is experimental.")
|
| 755 |
-
print("[WARNING] As of 4/30/23, this feature requires PyTorch-nightly build. See here for details: https://github.com/haotian-liu/LLaVA#experimental-use-fsdp-to-save-memory-in-pretraining")
|
| 756 |
-
|
| 757 |
-
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
| 758 |
-
def patch_FSDP_use_orig_params(func):
|
| 759 |
-
def wrap_func(*args, **kwargs):
|
| 760 |
-
use_orig_params = kwargs.pop('use_orig_params', True)
|
| 761 |
-
return func(*args, **kwargs, use_orig_params=use_orig_params)
|
| 762 |
-
return wrap_func
|
| 763 |
-
|
| 764 |
-
FSDP.__init__ = patch_FSDP_use_orig_params(FSDP.__init__)
|
| 765 |
-
|
| 766 |
-
if training_args.bits in [4, 8]:
|
| 767 |
-
from peft.tuners.lora import LoraLayer
|
| 768 |
-
for name, module in model.named_modules():
|
| 769 |
-
if isinstance(module, LoraLayer):
|
| 770 |
-
if training_args.bf16:
|
| 771 |
-
module = module.to(torch.bfloat16)
|
| 772 |
-
if 'norm' in name:
|
| 773 |
-
module = module.to(torch.float32)
|
| 774 |
-
if 'lm_head' in name or 'embed_tokens' in name:
|
| 775 |
-
if hasattr(module, 'weight'):
|
| 776 |
-
if training_args.bf16 and module.weight.dtype == torch.float32:
|
| 777 |
-
module = module.to(torch.bfloat16)
|
| 778 |
-
|
| 779 |
-
# start for MGIE
|
| 780 |
-
os.makedirs('_log', exist_ok=True)
|
| 781 |
-
|
| 782 |
-
pt = {}
|
| 783 |
-
for i in tqdm(range(2)): pt.update(torch.load('./_ckpt/LLaVA-7B-v1/pytorch_model-0000%d-of-00002.bin'%(i+1), map_location='cpu'))
|
| 784 |
-
miss, unexp = model.load_state_dict(pt, strict=False)
|
| 785 |
-
print('miss:', miss), print('unexp:', unexp)
|
| 786 |
-
|
| 787 |
-
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
| 788 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 789 |
-
print(tokenizer), json.dump(tokenizer.get_vocab(), open('_log/vocabs.json', 'w'), indent=2)
|
| 790 |
-
|
| 791 |
-
for n, p in model.named_parameters():
|
| 792 |
-
if 'embed_tokens' in n or 'lm_head' in n or 'edit_head' in n or 'unet' in n: p.requires_grad = True
|
| 793 |
-
else: p.requires_grad = False
|
| 794 |
-
with open('_log/parameters.txt', 'w') as F:
|
| 795 |
-
for n, p in model.named_parameters(): F.write('%s %s %s\n'%(n, str(p.shape), str(p.requires_grad)))
|
| 796 |
-
|
| 797 |
-
with open('_log/args_train.txt', 'w') as F:
|
| 798 |
-
for key in vars(training_args): F.write('%s: %s\n'%(str(key), str(vars(training_args)[key])))
|
| 799 |
-
# end for MGIE
|
| 800 |
-
|
| 801 |
-
data_module = make_supervised_data_module(tokenizer=tokenizer,
|
| 802 |
-
data_args=data_args)
|
| 803 |
-
trainer = LLaVATrainer(model=model,
|
| 804 |
-
tokenizer=tokenizer,
|
| 805 |
-
args=training_args,
|
| 806 |
-
**data_module)
|
| 807 |
-
|
| 808 |
-
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
| 809 |
-
trainer.train(resume_from_checkpoint=True)
|
| 810 |
-
else:
|
| 811 |
-
trainer.train()
|
| 812 |
-
trainer.save_state()
|
| 813 |
-
|
| 814 |
-
if training_args.lora_enable:
|
| 815 |
-
state_dict = get_peft_state_maybe_zero_3(
|
| 816 |
-
model.named_parameters(), training_args.lora_bias
|
| 817 |
-
)
|
| 818 |
-
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
| 819 |
-
model.named_parameters()
|
| 820 |
-
)
|
| 821 |
-
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
| 822 |
-
model.config.save_pretrained(training_args.output_dir)
|
| 823 |
-
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
| 824 |
-
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
| 825 |
-
else:
|
| 826 |
-
safe_save_model_for_hf_trainer(trainer=trainer,
|
| 827 |
-
output_dir=training_args.output_dir)
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
if __name__ == "__main__":
|
| 831 |
-
train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|