Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/fastspeech
/train_fastspeech.py
| # -*- coding: utf-8 -*- | |
| # Copyright 2020 Minh Nguyen (@dathudeptrai) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Train FastSpeech.""" | |
| import tensorflow as tf | |
| physical_devices = tf.config.list_physical_devices("GPU") | |
| for i in range(len(physical_devices)): | |
| tf.config.experimental.set_memory_growth(physical_devices[i], True) | |
| import argparse | |
| import logging | |
| import os | |
| import sys | |
| sys.path.append(".") | |
| import numpy as np | |
| import yaml | |
| import tensorflow_tts | |
| import tensorflow_tts.configs.fastspeech as FASTSPEECH_CONFIG | |
| from examples.fastspeech.fastspeech_dataset import CharactorDurationMelDataset | |
| from tensorflow_tts.models import TFFastSpeech | |
| from tensorflow_tts.optimizers import AdamWeightDecay, WarmUp | |
| from tensorflow_tts.trainers import Seq2SeqBasedTrainer | |
| from tensorflow_tts.utils import calculate_2d_loss, calculate_3d_loss, return_strategy | |
| class FastSpeechTrainer(Seq2SeqBasedTrainer): | |
| """FastSpeech Trainer class based on Seq2SeqBasedTrainer.""" | |
| def __init__( | |
| self, config, strategy, steps=0, epochs=0, is_mixed_precision=False, | |
| ): | |
| """Initialize trainer. | |
| Args: | |
| steps (int): Initial global steps. | |
| epochs (int): Initial global epochs. | |
| config (dict): Config dict loaded from yaml format configuration file. | |
| is_mixed_precision (bool): Use mixed precision or not. | |
| """ | |
| super(FastSpeechTrainer, self).__init__( | |
| steps=steps, | |
| epochs=epochs, | |
| config=config, | |
| strategy=strategy, | |
| is_mixed_precision=is_mixed_precision, | |
| ) | |
| # define metrics to aggregates data and use tf.summary logs them | |
| self.list_metrics_name = ["duration_loss", "mel_loss_before", "mel_loss_after"] | |
| self.init_train_eval_metrics(self.list_metrics_name) | |
| self.reset_states_train() | |
| self.reset_states_eval() | |
| self.config = config | |
| def compile(self, model, optimizer): | |
| super().compile(model, optimizer) | |
| self.mse = tf.keras.losses.MeanSquaredError( | |
| reduction=tf.keras.losses.Reduction.NONE | |
| ) | |
| self.mae = tf.keras.losses.MeanAbsoluteError( | |
| reduction=tf.keras.losses.Reduction.NONE | |
| ) | |
| def compute_per_example_losses(self, batch, outputs): | |
| """Compute per example losses and return dict_metrics_losses | |
| Note that all element of the loss MUST has a shape [batch_size] and | |
| the keys of dict_metrics_losses MUST be in self.list_metrics_name. | |
| Args: | |
| batch: dictionary batch input return from dataloader | |
| outputs: outputs of the model | |
| Returns: | |
| per_example_losses: per example losses for each GPU, shape [B] | |
| dict_metrics_losses: dictionary loss. | |
| """ | |
| mel_before, mel_after, duration_outputs = outputs | |
| log_duration = tf.math.log( | |
| tf.cast(tf.math.add(batch["duration_gts"], 1), tf.float32) | |
| ) | |
| duration_loss = self.mse(log_duration, duration_outputs) | |
| mel_loss_before = calculate_3d_loss(batch["mel_gts"], mel_before, self.mae) | |
| mel_loss_after = calculate_3d_loss(batch["mel_gts"], mel_after, self.mae) | |
| per_example_losses = duration_loss + mel_loss_before + mel_loss_after | |
| dict_metrics_losses = { | |
| "duration_loss": duration_loss, | |
| "mel_loss_before": mel_loss_before, | |
| "mel_loss_after": mel_loss_after, | |
| } | |
| return per_example_losses, dict_metrics_losses | |
| def generate_and_save_intermediate_result(self, batch): | |
| """Generate and save intermediate result.""" | |
| import matplotlib.pyplot as plt | |
| # predict with tf.function. | |
| outputs = self.one_step_predict(batch) | |
| mels_before, mels_after, *_ = outputs | |
| mel_gts = batch["mel_gts"] | |
| utt_ids = batch["utt_ids"] | |
| # convert to tensor. | |
| # here we just take a sample at first replica. | |
| try: | |
| mels_before = mels_before.values[0].numpy() | |
| mels_after = mels_after.values[0].numpy() | |
| mel_gts = mel_gts.values[0].numpy() | |
| utt_ids = utt_ids.values[0].numpy() | |
| except Exception: | |
| mels_before = mels_before.numpy() | |
| mels_after = mels_after.numpy() | |
| mel_gts = mel_gts.numpy() | |
| utt_ids = utt_ids.numpy() | |
| # check directory | |
| dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps") | |
| if not os.path.exists(dirname): | |
| os.makedirs(dirname) | |
| for idx, (mel_gt, mel_before, mel_after) in enumerate( | |
| zip(mel_gts, mels_before, mels_after), 0 | |
| ): | |
| mel_gt = tf.reshape(mel_gt, (-1, 80)).numpy() # [length, 80] | |
| mel_before = tf.reshape(mel_before, (-1, 80)).numpy() # [length, 80] | |
| mel_after = tf.reshape(mel_after, (-1, 80)).numpy() # [length, 80] | |
| # plit figure and save it | |
| utt_id = utt_ids[idx].decode("utf-8") | |
| figname = os.path.join(dirname, f"{utt_id}.png") | |
| fig = plt.figure(figsize=(10, 8)) | |
| ax1 = fig.add_subplot(311) | |
| ax2 = fig.add_subplot(312) | |
| ax3 = fig.add_subplot(313) | |
| im = ax1.imshow(np.rot90(mel_gt), aspect="auto", interpolation="none") | |
| ax1.set_title("Target Mel-Spectrogram") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax1) | |
| ax2.set_title("Predicted Mel-before-Spectrogram") | |
| im = ax2.imshow(np.rot90(mel_before), aspect="auto", interpolation="none") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax2) | |
| ax3.set_title("Predicted Mel-after-Spectrogram") | |
| im = ax3.imshow(np.rot90(mel_after), aspect="auto", interpolation="none") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax3) | |
| plt.tight_layout() | |
| plt.savefig(figname) | |
| plt.close() | |
| def main(): | |
| """Run training process.""" | |
| parser = argparse.ArgumentParser( | |
| description="Train FastSpeech (See detail in tensorflow_tts/bin/train-fastspeech.py)" | |
| ) | |
| parser.add_argument( | |
| "--train-dir", | |
| default=None, | |
| type=str, | |
| help="directory including training data. ", | |
| ) | |
| parser.add_argument( | |
| "--dev-dir", | |
| default=None, | |
| type=str, | |
| help="directory including development data. ", | |
| ) | |
| parser.add_argument( | |
| "--use-norm", default=1, type=int, help="usr norm-mels for train or raw." | |
| ) | |
| parser.add_argument( | |
| "--outdir", type=str, required=True, help="directory to save checkpoints." | |
| ) | |
| parser.add_argument( | |
| "--config", type=str, required=True, help="yaml format configuration file." | |
| ) | |
| parser.add_argument( | |
| "--resume", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help='checkpoint file path to resume training. (default="")', | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| type=int, | |
| default=1, | |
| help="logging level. higher is more logging. (default=1)", | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| default=0, | |
| type=int, | |
| help="using mixed precision for generator or not.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help="pretrained checkpoint file to load weights from. Auto-skips non-matching layers", | |
| ) | |
| args = parser.parse_args() | |
| # return strategy | |
| STRATEGY = return_strategy() | |
| # set mixed precision config | |
| if args.mixed_precision == 1: | |
| tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True}) | |
| args.mixed_precision = bool(args.mixed_precision) | |
| args.use_norm = bool(args.use_norm) | |
| # set logger | |
| if args.verbose > 1: | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| elif args.verbose > 0: | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| else: | |
| logging.basicConfig( | |
| level=logging.WARN, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| logging.warning("Skip DEBUG/INFO messages") | |
| # check directory existence | |
| if not os.path.exists(args.outdir): | |
| os.makedirs(args.outdir) | |
| # check arguments | |
| if args.train_dir is None: | |
| raise ValueError("Please specify --train-dir") | |
| if args.dev_dir is None: | |
| raise ValueError("Please specify --valid-dir") | |
| # load and save config | |
| with open(args.config) as f: | |
| config = yaml.load(f, Loader=yaml.Loader) | |
| config.update(vars(args)) | |
| config["version"] = tensorflow_tts.__version__ | |
| with open(os.path.join(args.outdir, "config.yml"), "w") as f: | |
| yaml.dump(config, f, Dumper=yaml.Dumper) | |
| for key, value in config.items(): | |
| logging.info(f"{key} = {value}") | |
| # get dataset | |
| if config["remove_short_samples"]: | |
| mel_length_threshold = config["mel_length_threshold"] | |
| else: | |
| mel_length_threshold = None | |
| if config["format"] == "npy": | |
| charactor_query = "*-ids.npy" | |
| mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy" | |
| duration_query = "*-durations.npy" | |
| charactor_load_fn = np.load | |
| mel_load_fn = np.load | |
| duration_load_fn = np.load | |
| else: | |
| raise ValueError("Only npy are supported.") | |
| # define train/valid dataset | |
| train_dataset = CharactorDurationMelDataset( | |
| root_dir=args.train_dir, | |
| charactor_query=charactor_query, | |
| mel_query=mel_query, | |
| duration_query=duration_query, | |
| charactor_load_fn=charactor_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| duration_load_fn=duration_load_fn, | |
| mel_length_threshold=mel_length_threshold, | |
| ).create( | |
| is_shuffle=config["is_shuffle"], | |
| allow_cache=config["allow_cache"], | |
| batch_size=config["batch_size"] | |
| * STRATEGY.num_replicas_in_sync | |
| * config["gradient_accumulation_steps"], | |
| ) | |
| valid_dataset = CharactorDurationMelDataset( | |
| root_dir=args.dev_dir, | |
| charactor_query=charactor_query, | |
| mel_query=mel_query, | |
| duration_query=duration_query, | |
| charactor_load_fn=charactor_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| duration_load_fn=duration_load_fn, | |
| ).create( | |
| is_shuffle=config["is_shuffle"], | |
| allow_cache=config["allow_cache"], | |
| batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync, | |
| ) | |
| # define trainer | |
| trainer = FastSpeechTrainer( | |
| config=config, | |
| strategy=STRATEGY, | |
| steps=0, | |
| epochs=0, | |
| is_mixed_precision=args.mixed_precision, | |
| ) | |
| with STRATEGY.scope(): | |
| # define model | |
| fastspeech = TFFastSpeech( | |
| config=FASTSPEECH_CONFIG.FastSpeechConfig(**config["fastspeech_params"]) | |
| ) | |
| fastspeech._build() | |
| fastspeech.summary() | |
| if len(args.pretrained) > 1: | |
| fastspeech.load_weights(args.pretrained, by_name=True, skip_mismatch=True) | |
| logging.info( | |
| f"Successfully loaded pretrained weight from {args.pretrained}." | |
| ) | |
| # AdamW for fastspeech | |
| learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( | |
| initial_learning_rate=config["optimizer_params"]["initial_learning_rate"], | |
| decay_steps=config["optimizer_params"]["decay_steps"], | |
| end_learning_rate=config["optimizer_params"]["end_learning_rate"], | |
| ) | |
| learning_rate_fn = WarmUp( | |
| initial_learning_rate=config["optimizer_params"]["initial_learning_rate"], | |
| decay_schedule_fn=learning_rate_fn, | |
| warmup_steps=int( | |
| config["train_max_steps"] | |
| * config["optimizer_params"]["warmup_proportion"] | |
| ), | |
| ) | |
| optimizer = AdamWeightDecay( | |
| learning_rate=learning_rate_fn, | |
| weight_decay_rate=config["optimizer_params"]["weight_decay"], | |
| beta_1=0.9, | |
| beta_2=0.98, | |
| epsilon=1e-6, | |
| exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], | |
| ) | |
| _ = optimizer.iterations | |
| # compile trainer | |
| trainer.compile(model=fastspeech, optimizer=optimizer) | |
| # start training | |
| try: | |
| trainer.fit( | |
| train_dataset, | |
| valid_dataset, | |
| saved_path=os.path.join(config["outdir"], "checkpoints/"), | |
| resume=args.resume, | |
| ) | |
| except KeyboardInterrupt: | |
| trainer.save_checkpoint() | |
| logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.") | |
| if __name__ == "__main__": | |
| main() | |