Spaces:
Runtime error
Runtime error
Commit
·
fc74c52
1
Parent(s):
bfed7dd
adding application file
Browse files- app.py +215 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""InfogenQA_langchain.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1ubmRCRQhU3K16iDYgBcJ4XMPRffvctaa
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Installing all required libraries
|
| 11 |
+
# Langchain - for buiding retrieval chains
|
| 12 |
+
# faiss-gpu - for performing similarity search on GPUs
|
| 13 |
+
# sentence_transformers - pre-trained sentence embeddings for understanding semantics
|
| 14 |
+
|
| 15 |
+
# Install required libraries
|
| 16 |
+
# !pip install -qU transformers accelerate einops langchain xformers bitsandbytes faiss-gpu sentence_transformers
|
| 17 |
+
# !pip install gradio
|
| 18 |
+
|
| 19 |
+
# For handling UTF-8 locale error
|
| 20 |
+
import locale
|
| 21 |
+
def getpreferredencoding(do_setlocale = True):
|
| 22 |
+
return "UTF-8"
|
| 23 |
+
locale.getpreferredencoding = getpreferredencoding
|
| 24 |
+
|
| 25 |
+
from torch import cuda, bfloat16
|
| 26 |
+
import transformers
|
| 27 |
+
|
| 28 |
+
# Model used
|
| 29 |
+
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
| 30 |
+
|
| 31 |
+
# Detects available device (GPU or CPU)
|
| 32 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
| 33 |
+
|
| 34 |
+
# set quantization configuration to load large model with less GPU memory
|
| 35 |
+
# this requires the `bitsandbytes` library
|
| 36 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
| 37 |
+
load_in_4bit=True,
|
| 38 |
+
bnb_4bit_quant_type='nf4',
|
| 39 |
+
bnb_4bit_use_double_quant=True,
|
| 40 |
+
bnb_4bit_compute_dtype=bfloat16
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Downloading and parsing model's configuration from HF
|
| 45 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
| 46 |
+
model_id,
|
| 47 |
+
use_auth_token=hf_auth
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Downloading and Initializing the model
|
| 51 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_id,
|
| 53 |
+
trust_remote_code=True,
|
| 54 |
+
config=model_config,
|
| 55 |
+
quantization_config=bnb_config,
|
| 56 |
+
device_map='auto',
|
| 57 |
+
use_auth_token=hf_auth
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# enable evaluation mode to allow model inference
|
| 61 |
+
model.eval()
|
| 62 |
+
|
| 63 |
+
print(f"Model loaded on {device}")
|
| 64 |
+
|
| 65 |
+
# Initialize tokenization process for Llama-2
|
| 66 |
+
# used to process text into LLM compatible format
|
| 67 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 68 |
+
model_id,
|
| 69 |
+
use_auth_token=hf_auth
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Defining strings to be treated as 'stop tokens' during text generation
|
| 73 |
+
stop_list = ['\nHuman:', '\n```\n']
|
| 74 |
+
|
| 75 |
+
# Converting stop tokens to their corresponding numerical token IDs
|
| 76 |
+
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
| 77 |
+
stop_token_ids
|
| 78 |
+
|
| 79 |
+
import torch
|
| 80 |
+
|
| 81 |
+
# Converitng stop_token_ids into long tensors (64-bit) and load into selected device
|
| 82 |
+
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
| 83 |
+
stop_token_ids
|
| 84 |
+
|
| 85 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
| 86 |
+
|
| 87 |
+
# define custom stopping criteria object
|
| 88 |
+
# Allows us to check whether the generated text contains stop_token_ids
|
| 89 |
+
class StopOnTokens(StoppingCriteria):
|
| 90 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 91 |
+
for stop_ids in stop_token_ids:
|
| 92 |
+
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
| 93 |
+
return True
|
| 94 |
+
return False
|
| 95 |
+
|
| 96 |
+
# Defining a list of stopping criteria
|
| 97 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
| 98 |
+
|
| 99 |
+
# Function to generate text using Llama
|
| 100 |
+
|
| 101 |
+
generate_text = transformers.pipeline(
|
| 102 |
+
model=model,
|
| 103 |
+
tokenizer=tokenizer,
|
| 104 |
+
return_full_text=True, # langchain expects the full text
|
| 105 |
+
task='text-generation',
|
| 106 |
+
# we pass model parameters here too
|
| 107 |
+
stopping_criteria=stopping_criteria, # without this model rambles during chat
|
| 108 |
+
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
| 109 |
+
max_new_tokens=512, # max number of tokens to generate in the output
|
| 110 |
+
repetition_penalty=1.1 # without this output begins repeating
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Checking whether it is able to generate text or not
|
| 114 |
+
from langchain.llms import HuggingFacePipeline
|
| 115 |
+
|
| 116 |
+
llm = HuggingFacePipeline(pipeline=generate_text)
|
| 117 |
+
|
| 118 |
+
llm(prompt="Who is the CEO of Infogen Labs?")
|
| 119 |
+
|
| 120 |
+
# Importing WebBaseLoader class - used to load documents from web links
|
| 121 |
+
from langchain.document_loaders import WebBaseLoader
|
| 122 |
+
|
| 123 |
+
# A list containing web links from Infogen-Labs website
|
| 124 |
+
web_links = ["https://corp.infogen-labs.com/index.html",
|
| 125 |
+
"https://corp.infogen-labs.com/technology.html",
|
| 126 |
+
"https://corp.infogen-labs.com/EdTech.html",
|
| 127 |
+
"https://corp.infogen-labs.com/FinTech.html",
|
| 128 |
+
"https://corp.infogen-labs.com/retail.html",
|
| 129 |
+
"https://corp.infogen-labs.com/telecom.html",
|
| 130 |
+
"https://corp.infogen-labs.com/stud10.html",
|
| 131 |
+
"https://corp.infogen-labs.com/construction.html",
|
| 132 |
+
"https://corp.infogen-labs.com/RandD.html",
|
| 133 |
+
"https://corp.infogen-labs.com/microsoft.html",
|
| 134 |
+
"https://corp.infogen-labs.com/edge-technology.html",
|
| 135 |
+
"https://corp.infogen-labs.com/cloud-computing.html",
|
| 136 |
+
"https://corp.infogen-labs.com/uiux-studio.html",
|
| 137 |
+
"https://corp.infogen-labs.com/mobile-studio.html",
|
| 138 |
+
"https://corp.infogen-labs.com/qaqc-studio.html",
|
| 139 |
+
"https://corp.infogen-labs.com/platforms.html",
|
| 140 |
+
"https://corp.infogen-labs.com/about-us.html",
|
| 141 |
+
"https://corp.infogen-labs.com/career.html",
|
| 142 |
+
"https://corp.infogen-labs.com/contact-us.html"
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
# Fetch the content from web links and store the extracted text
|
| 146 |
+
loader = WebBaseLoader(web_links)
|
| 147 |
+
documents = loader.load()
|
| 148 |
+
|
| 149 |
+
# Splitting large text documents into smaller chunks for easier processing
|
| 150 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 151 |
+
|
| 152 |
+
# Specifying chunk size
|
| 153 |
+
# chunk_overlap allows some overlap between cuts to maintain context
|
| 154 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
| 155 |
+
# A lsit of splits from all the document
|
| 156 |
+
all_splits = text_splitter.split_documents(documents)
|
| 157 |
+
|
| 158 |
+
from langchain.embeddings import HuggingFaceEmbeddings # For numerical representation of the text
|
| 159 |
+
from langchain.vectorstores import FAISS # Similarity search in high-dimensional vector space
|
| 160 |
+
|
| 161 |
+
model_name = "sentence-transformers/all-mpnet-base-v2" # Embedding model
|
| 162 |
+
model_kwargs = {"device": "cuda"}
|
| 163 |
+
|
| 164 |
+
# used to generate embeddings from text
|
| 165 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
| 166 |
+
|
| 167 |
+
# storing embeddings in the vector store
|
| 168 |
+
vectorstore = FAISS.from_documents(all_splits, embeddings)
|
| 169 |
+
|
| 170 |
+
# Creating conversational agents that combine retrieval and generation capabilities
|
| 171 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 172 |
+
|
| 173 |
+
# Creating a conversational retrieval chain by taking three arguments:
|
| 174 |
+
# LLM - for text generation
|
| 175 |
+
# converts FAISS vector store into a retriver object
|
| 176 |
+
# Also return the original source document to provide more context
|
| 177 |
+
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
| 178 |
+
|
| 179 |
+
# For demo purpose
|
| 180 |
+
# Storing chat history for asking follow up questions
|
| 181 |
+
# chat_history = []
|
| 182 |
+
|
| 183 |
+
# # Asking query
|
| 184 |
+
# query = "Who is the CEO of Infogen Labs?"
|
| 185 |
+
# result = chain({"question": query, "chat_history": chat_history})
|
| 186 |
+
|
| 187 |
+
# # Printing the result
|
| 188 |
+
# print(result['answer'])
|
| 189 |
+
|
| 190 |
+
# # Adding current question and generated answer
|
| 191 |
+
# chat_history.append((query, result["answer"]))
|
| 192 |
+
|
| 193 |
+
# # Printing source document from where the results were derived
|
| 194 |
+
# print(result['source_documents'])
|
| 195 |
+
|
| 196 |
+
import gradio as gr
|
| 197 |
+
|
| 198 |
+
def process_answer(answer):
|
| 199 |
+
answer = answer.replace('If you don\'t know the answer to this question, please say so.', '')
|
| 200 |
+
answer = answer.replace('Based on the information provided in the passage', 'Based on my current knowledge')
|
| 201 |
+
return answer
|
| 202 |
+
|
| 203 |
+
def generate_response(message, history):
|
| 204 |
+
chat_history = []
|
| 205 |
+
|
| 206 |
+
for val in history:
|
| 207 |
+
chat_history.append(tuple(val))
|
| 208 |
+
|
| 209 |
+
result = chain({"question": message, "chat_history": chat_history})
|
| 210 |
+
response = process_answer(result['answer'])
|
| 211 |
+
|
| 212 |
+
return response
|
| 213 |
+
|
| 214 |
+
gr.ChatInterface(generate_response).launch()
|
| 215 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
accelerate
|
| 4 |
+
einops
|
| 5 |
+
langchain
|
| 6 |
+
xformers
|
| 7 |
+
bitsandbytes
|
| 8 |
+
faiss-gpu
|
| 9 |
+
sentence_transformers
|
| 10 |
+
gradio
|