Spaces:
Running
on
L4
Running
on
L4
File size: 18,182 Bytes
2299694 a22eb82 2299694 a22eb82 2299694 a22eb82 2299694 a22eb82 2299694 a22eb82 2299694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import pickle
import time
import numpy as np
import scipy, cv2, os, sys, argparse
from tqdm import tqdm
import torch
import librosa
from networks import define_G
from pcavs.config.AudioConfig import AudioConfig
sys.path.append('spectre')
from config import cfg as spectre_cfg
from src.spectre import SPECTRE
from audio2mesh_helper import *
from pcavs.models import create_model, networks
torch.manual_seed(0)
from scipy.signal import savgol_filter
class SimpleWrapperV2(nn.Module):
def __init__(self, cfg, use_ref=True, exp_dim=53, noload=False) -> None:
super().__init__()
self.audio_encoder = networks.define_A_sync(cfg)
self.mapping1 = nn.Linear(512+exp_dim, exp_dim)
nn.init.constant_(self.mapping1.weight, 0.)
nn.init.constant_(self.mapping1.bias, 0.)
self.use_ref = use_ref
def forward(self, x, ref, use_tanh=False):
x = self.audio_encoder.forward_feature(x).view(x.size(0), -1)
ref_reshape = ref.reshape(x.size(0), -1) #20, -1
y = self.mapping1(torch.cat([x, ref_reshape], dim=1))
if self.use_ref:
out = y.reshape(ref.shape[0], ref.shape[1], -1) + ref # resudial
else:
out = y.reshape(ref.shape[0], ref.shape[1], -1)
if use_tanh:
out[:, :50] = torch.tanh(out[:, :50]) * 3
return out
class Audio2Mesh(object):
def __init__(self, args) -> None:
self.args = args
spectre_cfg.model.use_tex = True
spectre_cfg.model.mask_type = args.mask_type
spectre_cfg.debug = self.args.debug
spectre_cfg.model.netA_sync = 'ressesync'
spectre_cfg.model.gpu_ids = [0]
self.spectre = SPECTRE(spectre_cfg)
self.spectre.eval()
self.face_tracker = None #FaceTrackerV2() # face landmark detection
self.mel_step_size = 16
self.fps = args.fps
self.Nw = args.tframes
self.device = self.args.device
self.image_size = self.args.image_size
### only audio
args.netA_sync = 'ressesync'
args.gpu_ids = [0]
args.exp_dim = 53
args.use_tanh = False
args.K = 20
self.audio2exp = 'pcavs'
#
self.avmodel = SimpleWrapperV2(args, exp_dim=args.exp_dim).cuda()
self.avmodel.load_state_dict(torch.load('../packages/pretrained/audio2expression_v2_model.tar')['opt'])
# 5, 160 = 25fps
self.audio = AudioConfig(frame_rate=args.fps, num_frames_per_clip=5, hop_size=160)
with open(os.path.join(args.source_dir, 'deca_infos.pkl'), 'rb') as f: # ?
self.fitting_coeffs = pickle.load(f, encoding='bytes')
self.coeffs_dict = { key: torch.Tensor(self.fitting_coeffs[key]).cuda().squeeze(1) for key in ['cam', 'pose', 'light', 'tex', 'shape', 'exp']}
#### find the close month
exp_tensors = torch.sum(self.coeffs_dict['exp'], dim=1)
ssss, sorted_indices = torch.sort(exp_tensors)
self.exp_id = sorted_indices[0].item()
if '.ts' in args.render_path:
self.render = torch.jit.load(args.render_path).cuda()
self.trt = True
else:
self.render = define_G(self.Nw*6, 3, args.ngf, args.netR).eval().cuda()
self.render.load_state_dict(torch.load(args.render_path))
self.trt = False
print('loaded cached images...')
@torch.no_grad()
def cg2real(self, rendedimages, start_frame=0):
## load original image and the mask
self.source_images = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_frame'),\
resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]
self.source_masks = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_mask'),\
resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]
self.source_masks = torch.FloatTensor(np.transpose(self.source_masks,(0,3,1,2))/255.)
self.padded_real_tensor = torch.FloatTensor(np.transpose(self.source_images,(0,3,1,2))/255.)
## padding the rended_imgs
paded_tensor = torch.cat([rendedimages[0:1]]* (self.Nw // 2) + [rendedimages] + [rendedimages[-1:]]* (self.Nw // 2)).contiguous()
paded_mask_tensor = torch.cat([self.source_masks[0:1]]* (self.Nw // 2) + [self.source_masks] + [self.source_masks[-1:]]* (self.Nw // 2)).contiguous()
paded_real_tensor = torch.cat([self.padded_real_tensor[0:1]]* (self.Nw // 2) + [self.padded_real_tensor] + [self.padded_real_tensor[-1:]]* (self.Nw // 2)).contiguous()
# paded_mask_tensor = maskErosion(paded_mask_tensor, offY=self.args.mask)
padded_input = ((paded_real_tensor-0.5)*2 ) # *(1-paded_mask_tensor)
padded_input = torch.nn.functional.interpolate(padded_input, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
paded_tensor = torch.nn.functional.interpolate(paded_tensor, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
paded_tensor = (paded_tensor-0.5)*2
result = []
for index in tqdm(range(0, len(rendedimages), self.args.renderbs), desc='CG2REAL:'):
list_A = []
list_R = []
list_M = []
for i in range(self.args.renderbs):
idx = index + i
if idx+self.Nw > len(padded_input):
list_A.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
list_R.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
list_M.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
else:
list_A.append(padded_input[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_R.append(paded_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_M.append(paded_mask_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_A = torch.cat(list_A)
list_R = torch.cat(list_R)
list_M = torch.cat(list_M)
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3]
# list_A = padded_input
mask = maskErosion(mask, offY=self.args.mask)
list_A = list_A * (1 - mask[:,0:1])
A = torch.cat([list_A, list_R], 1)
if self.trt:
B = self.render(A.half().cuda())
elif self.args.netR == 'unet_256':
# import pdb; pdb.set_trace()
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3].cuda()
mask = maskErosion(mask, offY=self.args.mask)
B0 = list_A[:, idx:idx+3].cuda()
B = self.render(A.cuda()) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
elif self.args.netR == 's2am':
# import pdb; pdb.set_trace()
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3].cuda()
mask = maskErosion(mask, offY=self.args.mask)
B0 = list_A[:, idx:idx+3].cuda()
B = self.render(A.cuda(), mask[:,0:1] ) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
else:
B = self.render(A.cuda())
result.append((B.cpu() + 1) * 0.5) # -1,1 -> 0,1
return torch.cat(result)[:len(rendedimages)]
@torch.no_grad()
def coeffs_to_img(self, vertices, coeffs, zero_pose=False, XK = 20):
xlen = vertices.shape[0]
all_shape_images = []
landmark2d = []
#### find the most larger pose 51 in the coeffs.
max_pose_51 = torch.max(self.coeffs_dict['pose'][..., 3:4].squeeze(-1))
for i in tqdm(range(0, xlen, XK)):
if i + XK > xlen:
XK = xlen - i
codedictdecoder = {}
codedictdecoder['shape'] = torch.zeros_like(self.coeffs_dict['shape'][i:i+XK].cuda())
codedictdecoder['tex'] = self.coeffs_dict['tex'][i:i+XK].cuda()
codedictdecoder['exp'] = torch.zeros_like(self.coeffs_dict['exp'][i:i+XK].cuda()) # all_exps[i:i+XK, :50].cuda() # # # vid_exps[i:i+1].cuda() i:i+XK
codedictdecoder['pose'] = self.coeffs_dict['pose'][i:i+XK] # vid_poses[i:i+1].cuda()
codedictdecoder['cam'] = self.coeffs_dict['cam'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
codedictdecoder['light'] = self.coeffs_dict['light'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
codedictdecoder['images'] = torch.zeros((XK,3,256,256)).cuda()
codedictdecoder['pose'][..., 3:4] = torch.clip(coeffs[i:i+XK, 50:51], 0, max_pose_51*0.9) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])
codedictdecoder['pose'][..., 4:6] = 0 # coeffs[i:i+XK, 50:]*( - 0.25) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])
sub_vertices = vertices[i:i+XK].cuda()
opdict = self.spectre.decode_verts(codedictdecoder, sub_vertices, rendering=True, vis_lmk=False, return_vis=False)
landmark2d.append(opdict['landmarks2d'].cpu())
all_shape_images.append(opdict['rendered_images'].cpu())
rendedimages = torch.cat(all_shape_images)
lmk2d = torch.cat(landmark2d)
return rendedimages, lmk2d
@torch.no_grad()
def run_spectre_v3(self, wav=None, ds_features=None, L=20):
wav = audio_normalize(wav)
all_mel = self.audio.melspectrogram(wav).astype(np.float32).T
frames_from_audio = np.arange(2, len(all_mel) // self.audio.num_bins_per_frame - 2) # 2,[]mmmmmmmmmmmmmmmmmmmmmmmmmmmm
audio_inds = frame2audio_indexs(frames_from_audio, self.audio.num_frames_per_clip, self.audio.num_bins_per_frame)
vid_exps = self.coeffs_dict['exp'][self.exp_id:self.exp_id+1]
vid_poses = self.coeffs_dict['pose'][self.exp_id:self.exp_id+1]
ref = torch.cat([vid_exps.view(1, 50), vid_poses[:, 3:].view(1, 3)], dim=-1)
ref = ref[...,:self.args.exp_dim]
K = 20
xlens = len(audio_inds) # len(self.coeffs_dict['exp'])
exps = []
for i in tqdm(range(0, xlens, K), desc='S2 DECODER:'+ str(xlens) + ' '):
mels = []
for j in range(K):
if i + j < xlens:
idx = i+j # //3 * 3
mel = load_spectrogram(all_mel, audio_inds[idx], self.audio.num_frames_per_clip * self.audio.num_bins_per_frame).cuda()
mel = mel.view(-1, 1, 80, self.audio.num_frames_per_clip * self.audio.num_bins_per_frame)
mels.append(mel)
else:
break
mels = torch.cat(mels, dim=0)
new_exp = self.avmodel(mels, ref.repeat(mels.shape[0], 1, 1).cuda(), self.args.use_tanh) # exp 53
exps+= [new_exp.view(-1, 53)]
all_exps = torch.cat(exps,axis=0)
return all_exps
@torch.no_grad()
def test_model(self, wav_path):
sys.path.append('../FaceFormer')
from faceformer import Faceformer
from transformers import Wav2Vec2FeatureExtractor,Wav2Vec2Processor
from faceformer import PeriodicPositionalEncoding, init_biased_mask
#build model
self.args.train_subjects = " ".join(["A"]*8) # suitable for pre-trained faceformer checkpoint
model = Faceformer(self.args)
model.load_state_dict(torch.load('/apdcephfs/private_shadowcun/Avatar2dFF/medias/videos/c8/mask5000_l2/6_model.pth')) # ../packages/pretrained/28_ff_model.pth
model = model.to(torch.device(self.device))
model.eval()
# hacking for long audio generation
model.PPE = PeriodicPositionalEncoding(self.args.feature_dim, period = self.args.period, max_seq_len=6000).cuda()
model.biased_mask = init_biased_mask(n_head = 4, max_seq_len = 6000, period=self.args.period).cuda()
train_subjects_list = ["A"] * 8
one_hot_labels = np.eye(len(train_subjects_list))
one_hot = one_hot_labels[0]
one_hot = np.reshape(one_hot,(-1,one_hot.shape[0]))
one_hot = torch.FloatTensor(one_hot).to(device=self.device)
vertices_npy = np.load(self.args.source_dir + '/mesh_pose0.npy')
vertices_npy = np.array(vertices_npy).reshape(-1, 5023*3)
temp = vertices_npy[33] # 829
template = temp.reshape((-1))
template = np.reshape(template,(-1,template.shape[0]))
template = torch.FloatTensor(template).to(device=self.device)
speech_array, sampling_rate = librosa.load(os.path.join(wav_path), sr=16000)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
audio_feature = np.squeeze(processor(speech_array,sampling_rate=16000).input_values)
audio_feature = np.reshape(audio_feature,(-1,audio_feature.shape[0]))
audio_feature = torch.FloatTensor(audio_feature).to(device=self.device)
prediction = model.predict(audio_feature, template, one_hot, 1.0) # (1, seq_len, V*3)
return prediction.squeeze()
@torch.no_grad()
def run(self, face, audio, start_frame=0):
wav, sr = librosa.load(audio, sr=16000) # 16*80 ? 20*80
wav_tensor = torch.FloatTensor(wav).unsqueeze(0) if len(wav.shape) == 1 else torch.FloatTensor(wav)
_, frames = parse_audio_length(wav_tensor.shape[1], 16000, self.args.fps)
##### audio-guided, only use the jaw movement
all_exps = self.run_spectre_v3(wav)
# #### temp. interpolation
all_exps = torch.nn.functional.interpolate(all_exps.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
all_exps = all_exps.permute([0,2,1]).squeeze(0)
# run faceformer for face mesh generation
predicted_vertices = self.test_model(audio)
predicted_vertices = predicted_vertices.view(-1, 5023*3)
#### temp. interpolation
predicted_vertices = torch.nn.functional.interpolate(predicted_vertices.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
predicted_vertices = predicted_vertices.permute([0,2,1]).squeeze(0).view(-1, 5023, 3)
all_exps = torch.Tensor(savgol_filter(all_exps.cpu().numpy(), 5, 3, axis=0)).cpu() # smooth GT
rendedimages, lm2d = self.coeffs_to_img(predicted_vertices, all_exps, zero_pose=True)
debug_video_gen(rendedimages, self.args.result_dir+"/debug_before_ff.mp4", wav_tensor, self.args.fps, sr)
# cg2real
debug_video_gen(self.cg2real(rendedimages, start_frame=start_frame), self.args.result_dir+"/debug_cg2real_raw.mp4", wav_tensor, self.args.fps, sr)
exit()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stylization and Seamless Video Dubbing')
parser.add_argument('--face', default='examples', type=str, help='')
parser.add_argument('--audio', default='examples', type=str, help='')
parser.add_argument('--source_dir', default='examples', type=str,help='TODO')
parser.add_argument('--result_dir', default='examples', type=str,help='TODO')
parser.add_argument('--backend', default='wav2lip', type=str,help='wav2lip or pcavs')
parser.add_argument('--result_tag', default='result', type=str,help='TODO')
parser.add_argument('--netR', default='unet_256', type=str,help='TODO')
parser.add_argument('--render_path', default='', type=str,help='TODO')
parser.add_argument('--ngf', default=16, type=int,help='TODO')
parser.add_argument('--fps', default=20, type=int,help='TODO')
parser.add_argument('--mask', default=100, type=int,help='TODO')
parser.add_argument('--mask_type', default='v3', type=str,help='TODO')
parser.add_argument('--image_size', default=256, type=int,help='TODO')
parser.add_argument('--input_nc', default=21, type=int,help='TODO')
parser.add_argument('--output_nc', default=3, type=int,help='TODO')
parser.add_argument('--renderbs', default=16, type=int,help='TODO')
parser.add_argument('--tframes', default=1, type=int,help='TODO')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--enhance', action='store_true')
parser.add_argument('--phone', action='store_true')
#### faceformer
parser.add_argument("--model_name", type=str, default="VOCA")
parser.add_argument("--dataset", type=str, default="vocaset", help='vocaset or BIWI')
parser.add_argument("--feature_dim", type=int, default=64, help='64 for vocaset; 128 for BIWI')
parser.add_argument("--period", type=int, default=30, help='period in PPE - 30 for vocaset; 25 for BIWI')
parser.add_argument("--vertice_dim", type=int, default=5023*3, help='number of vertices - 5023*3 for vocaset; 23370*3 for BIWI')
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--train_subjects", type=str, default="FaceTalk_170728_03272_TA ")
parser.add_argument("--test_subjects", type=str, default="FaceTalk_170809_00138_TA FaceTalk_170731_00024_TA")
parser.add_argument("--condition", type=str, default="FaceTalk_170904_00128_TA", help='select a conditioning subject from train_subjects')
parser.add_argument("--subject", type=str, default="FaceTalk_170731_00024_TA", help='select a subject from test_subjects or train_subjects')
parser.add_argument("--background_black", type=bool, default=True, help='whether to use black background')
parser.add_argument("--template_path", type=str, default="templates.pkl", help='path of the personalized templates')
parser.add_argument("--render_template_path", type=str, default="templates", help='path of the mesh in BIWI/FLAME topology')
opt = parser.parse_args()
opt.img_size = 96
opt.static = True
opt.device = torch.device("cuda")
a2m = Audio2Mesh(opt)
print('link start!')
t = time.time()
# 02780
a2m.run(opt.face, opt.audio, 0)
print(time.time() - t) |