File size: 18,182 Bytes
2299694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22eb82
2299694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22eb82
2299694
a22eb82
2299694
 
 
a22eb82
2299694
a22eb82
2299694
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import pickle
import time
import numpy as np
import scipy, cv2, os, sys, argparse
from tqdm import tqdm
import torch
import librosa
from networks import define_G
from pcavs.config.AudioConfig import AudioConfig

sys.path.append('spectre')
from config import cfg as spectre_cfg
from src.spectre import SPECTRE

from audio2mesh_helper import *
from pcavs.models import create_model, networks

torch.manual_seed(0)
from scipy.signal import savgol_filter


class SimpleWrapperV2(nn.Module):
    def __init__(self, cfg, use_ref=True, exp_dim=53, noload=False) -> None:
        super().__init__()
       
        self.audio_encoder = networks.define_A_sync(cfg)

        self.mapping1 = nn.Linear(512+exp_dim, exp_dim)
        nn.init.constant_(self.mapping1.weight, 0.)
        nn.init.constant_(self.mapping1.bias, 0.)
        self.use_ref = use_ref

    def forward(self, x, ref, use_tanh=False):
        x = self.audio_encoder.forward_feature(x).view(x.size(0), -1)
        ref_reshape = ref.reshape(x.size(0), -1)  #20, -1
        
        y = self.mapping1(torch.cat([x, ref_reshape], dim=1)) 

        if self.use_ref:
            out = y.reshape(ref.shape[0], ref.shape[1], -1) + ref # resudial
        else:
            out = y.reshape(ref.shape[0], ref.shape[1], -1)

        if use_tanh:
            out[:, :50] = torch.tanh(out[:, :50]) * 3
            
        return out

class Audio2Mesh(object):
    def __init__(self, args) -> None:
        self.args = args

        spectre_cfg.model.use_tex = True
        spectre_cfg.model.mask_type = args.mask_type
        spectre_cfg.debug = self.args.debug
        spectre_cfg.model.netA_sync = 'ressesync'
        spectre_cfg.model.gpu_ids = [0]

        self.spectre = SPECTRE(spectre_cfg)
        self.spectre.eval()
        self.face_tracker = None #FaceTrackerV2() # face landmark detection
        self.mel_step_size = 16
        self.fps = args.fps
        self.Nw = args.tframes
        self.device = self.args.device
        self.image_size = self.args.image_size

        ### only audio
        args.netA_sync = 'ressesync'
        args.gpu_ids = [0]
        args.exp_dim = 53
        args.use_tanh = False
        args.K = 20 

        self.audio2exp = 'pcavs'

        # 
        self.avmodel = SimpleWrapperV2(args, exp_dim=args.exp_dim).cuda() 
        self.avmodel.load_state_dict(torch.load('../packages/pretrained/audio2expression_v2_model.tar')['opt'])

        # 5, 160 = 25fps
        self.audio = AudioConfig(frame_rate=args.fps, num_frames_per_clip=5, hop_size=160)
        
        with open(os.path.join(args.source_dir, 'deca_infos.pkl'), 'rb') as f: # ?
            self.fitting_coeffs = pickle.load(f, encoding='bytes')

        self.coeffs_dict  = { key: torch.Tensor(self.fitting_coeffs[key]).cuda().squeeze(1) for key in ['cam', 'pose', 'light', 'tex', 'shape', 'exp']}

        #### find the close month
        exp_tensors = torch.sum(self.coeffs_dict['exp'], dim=1)
        ssss, sorted_indices = torch.sort(exp_tensors)
        self.exp_id = sorted_indices[0].item()

        if '.ts' in args.render_path:
            self.render = torch.jit.load(args.render_path).cuda()
            self.trt = True
        else:
            self.render = define_G(self.Nw*6, 3, args.ngf, args.netR).eval().cuda()
            self.render.load_state_dict(torch.load(args.render_path))
            self.trt = False

        print('loaded cached images...')

    @torch.no_grad()
    def cg2real(self, rendedimages, start_frame=0):

        ## load original image and the mask
        self.source_images = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_frame'),\
             resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]
        self.source_masks = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_mask'),\
             resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]

        self.source_masks = torch.FloatTensor(np.transpose(self.source_masks,(0,3,1,2))/255.)
        self.padded_real_tensor = torch.FloatTensor(np.transpose(self.source_images,(0,3,1,2))/255.)

        ## padding the rended_imgs
        paded_tensor = torch.cat([rendedimages[0:1]]* (self.Nw // 2) + [rendedimages] + [rendedimages[-1:]]* (self.Nw // 2)).contiguous()
        paded_mask_tensor = torch.cat([self.source_masks[0:1]]* (self.Nw // 2) + [self.source_masks] + [self.source_masks[-1:]]* (self.Nw // 2)).contiguous()
        paded_real_tensor = torch.cat([self.padded_real_tensor[0:1]]* (self.Nw // 2) + [self.padded_real_tensor] + [self.padded_real_tensor[-1:]]* (self.Nw // 2)).contiguous()

        # paded_mask_tensor = maskErosion(paded_mask_tensor, offY=self.args.mask)
        padded_input = ((paded_real_tensor-0.5)*2 ) # *(1-paded_mask_tensor)
        padded_input = torch.nn.functional.interpolate(padded_input, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
        paded_tensor = torch.nn.functional.interpolate(paded_tensor, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
        paded_tensor = (paded_tensor-0.5)*2

        result = []
        for index in tqdm(range(0, len(rendedimages), self.args.renderbs), desc='CG2REAL:'):
            list_A = []
            list_R = []
            list_M = []
            for i in range(self.args.renderbs):
                idx = index + i
                if idx+self.Nw > len(padded_input):
                    list_A.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
                    list_R.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
                    list_M.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
                else:
                    list_A.append(padded_input[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
                    list_R.append(paded_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
                    list_M.append(paded_mask_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))

            list_A = torch.cat(list_A)
            list_R = torch.cat(list_R)
            list_M = torch.cat(list_M)

            idx = (self.Nw//2) * 3
            mask = list_M[:, idx:idx+3]

            # list_A = padded_input
            mask = maskErosion(mask, offY=self.args.mask)
            list_A = list_A * (1 - mask[:,0:1])
            A = torch.cat([list_A, list_R], 1)

            if self.trt:
                B = self.render(A.half().cuda())
            elif self.args.netR == 'unet_256':
                # import pdb; pdb.set_trace()
                idx = (self.Nw//2) * 3
                mask = list_M[:, idx:idx+3].cuda()
                mask = maskErosion(mask, offY=self.args.mask)
                B0 = list_A[:, idx:idx+3].cuda()
                B = self.render(A.cuda()) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
            elif  self.args.netR == 's2am':
                # import pdb; pdb.set_trace()
                idx = (self.Nw//2) * 3
                mask = list_M[:, idx:idx+3].cuda()
                mask = maskErosion(mask, offY=self.args.mask)
                B0 = list_A[:, idx:idx+3].cuda()
                B = self.render(A.cuda(), mask[:,0:1] ) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
            else:
                B = self.render(A.cuda()) 

            result.append((B.cpu() + 1) * 0.5) # -1,1 -> 0,1
        
        return torch.cat(result)[:len(rendedimages)]

    @torch.no_grad()
    def coeffs_to_img(self, vertices, coeffs, zero_pose=False, XK = 20):

        xlen = vertices.shape[0]
        all_shape_images = []
        landmark2d = []

        #### find the most larger pose 51 in the coeffs.
        max_pose_51 = torch.max(self.coeffs_dict['pose'][..., 3:4].squeeze(-1))

        for i in tqdm(range(0, xlen, XK)):
            
            if i + XK > xlen:
                XK = xlen - i

            codedictdecoder = {}
            codedictdecoder['shape'] = torch.zeros_like(self.coeffs_dict['shape'][i:i+XK].cuda())
            codedictdecoder['tex'] = self.coeffs_dict['tex'][i:i+XK].cuda()
            codedictdecoder['exp'] =  torch.zeros_like(self.coeffs_dict['exp'][i:i+XK].cuda()) #  all_exps[i:i+XK, :50].cuda()  # # # vid_exps[i:i+1].cuda() i:i+XK
            codedictdecoder['pose'] = self.coeffs_dict['pose'][i:i+XK]  # vid_poses[i:i+1].cuda()
            codedictdecoder['cam'] =  self.coeffs_dict['cam'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
            codedictdecoder['light'] = self.coeffs_dict['light'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
            codedictdecoder['images'] = torch.zeros((XK,3,256,256)).cuda()

            codedictdecoder['pose'][..., 3:4] = torch.clip(coeffs[i:i+XK, 50:51], 0, max_pose_51*0.9) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])
            codedictdecoder['pose'][..., 4:6] = 0 # coeffs[i:i+XK, 50:]*( - 0.25) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])

            sub_vertices = vertices[i:i+XK].cuda()

            opdict = self.spectre.decode_verts(codedictdecoder, sub_vertices, rendering=True, vis_lmk=False, return_vis=False)

            landmark2d.append(opdict['landmarks2d'].cpu())

            all_shape_images.append(opdict['rendered_images'].cpu())

        rendedimages = torch.cat(all_shape_images)

        lmk2d = torch.cat(landmark2d)

        return rendedimages, lmk2d

    
    @torch.no_grad()
    def run_spectre_v3(self, wav=None, ds_features=None, L=20):

        wav = audio_normalize(wav)
        all_mel = self.audio.melspectrogram(wav).astype(np.float32).T
        frames_from_audio = np.arange(2, len(all_mel) // self.audio.num_bins_per_frame - 2) # 2,[]mmmmmmmmmmmmmmmmmmmmmmmmmmmm
        audio_inds = frame2audio_indexs(frames_from_audio, self.audio.num_frames_per_clip, self.audio.num_bins_per_frame)

        vid_exps = self.coeffs_dict['exp'][self.exp_id:self.exp_id+1]
        vid_poses = self.coeffs_dict['pose'][self.exp_id:self.exp_id+1]
        
        ref = torch.cat([vid_exps.view(1, 50), vid_poses[:, 3:].view(1, 3)], dim=-1)
        ref = ref[...,:self.args.exp_dim]

        K = 20
        xlens = len(audio_inds) # len(self.coeffs_dict['exp'])

        exps = []
        for i in tqdm(range(0, xlens, K), desc='S2 DECODER:'+ str(xlens) + ' '):
            
            mels = []
            for j in range(K):
                if i + j < xlens:
                    idx = i+j # //3 * 3 
                    mel = load_spectrogram(all_mel, audio_inds[idx], self.audio.num_frames_per_clip * self.audio.num_bins_per_frame).cuda()
                    mel = mel.view(-1, 1, 80, self.audio.num_frames_per_clip * self.audio.num_bins_per_frame)
                    mels.append(mel)
                else:
                    break

            mels = torch.cat(mels, dim=0)
            new_exp = self.avmodel(mels, ref.repeat(mels.shape[0], 1, 1).cuda(), self.args.use_tanh) # exp 53
            exps+= [new_exp.view(-1, 53)]
            
        all_exps = torch.cat(exps,axis=0)
        
        return all_exps

    @torch.no_grad()
    def test_model(self, wav_path):   
        
        sys.path.append('../FaceFormer')
        from faceformer import Faceformer
        from transformers import Wav2Vec2FeatureExtractor,Wav2Vec2Processor
        from faceformer import PeriodicPositionalEncoding, init_biased_mask
        
        #build model
        self.args.train_subjects = " ".join(["A"]*8) # suitable for pre-trained faceformer checkpoint
        model = Faceformer(self.args)
        model.load_state_dict(torch.load('/apdcephfs/private_shadowcun/Avatar2dFF/medias/videos/c8/mask5000_l2/6_model.pth'))  # ../packages/pretrained/28_ff_model.pth
        model = model.to(torch.device(self.device))
        model.eval()

        # hacking for long audio generation
        model.PPE = PeriodicPositionalEncoding(self.args.feature_dim, period = self.args.period, max_seq_len=6000).cuda()
        model.biased_mask = init_biased_mask(n_head = 4, max_seq_len = 6000, period=self.args.period).cuda()

        train_subjects_list = ["A"] * 8

        one_hot_labels = np.eye(len(train_subjects_list))
        one_hot = one_hot_labels[0]
        one_hot = np.reshape(one_hot,(-1,one_hot.shape[0]))
        one_hot = torch.FloatTensor(one_hot).to(device=self.device)

        vertices_npy = np.load(self.args.source_dir + '/mesh_pose0.npy')
        vertices_npy = np.array(vertices_npy).reshape(-1, 5023*3)

        temp = vertices_npy[33] # 829

        template = temp.reshape((-1))
        template = np.reshape(template,(-1,template.shape[0]))
        template = torch.FloatTensor(template).to(device=self.device)

        speech_array, sampling_rate = librosa.load(os.path.join(wav_path), sr=16000)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
        audio_feature = np.squeeze(processor(speech_array,sampling_rate=16000).input_values)
        audio_feature = np.reshape(audio_feature,(-1,audio_feature.shape[0]))
        audio_feature = torch.FloatTensor(audio_feature).to(device=self.device)
 
        prediction = model.predict(audio_feature, template, one_hot, 1.0) # (1, seq_len, V*3)
        
        return prediction.squeeze()

    @torch.no_grad()
    def run(self, face, audio, start_frame=0):

        wav, sr = librosa.load(audio, sr=16000) # 16*80 ? 20*80
        wav_tensor = torch.FloatTensor(wav).unsqueeze(0) if len(wav.shape) == 1 else torch.FloatTensor(wav)
        _, frames = parse_audio_length(wav_tensor.shape[1], 16000, self.args.fps)

        #####  audio-guided, only use the jaw movement
        all_exps = self.run_spectre_v3(wav)

        # #### temp. interpolation
        all_exps = torch.nn.functional.interpolate(all_exps.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
        all_exps = all_exps.permute([0,2,1]).squeeze(0)

        # run faceformer for face mesh generation
        predicted_vertices = self.test_model(audio)
        predicted_vertices = predicted_vertices.view(-1, 5023*3)

        #### temp. interpolation
        predicted_vertices = torch.nn.functional.interpolate(predicted_vertices.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
        predicted_vertices = predicted_vertices.permute([0,2,1]).squeeze(0).view(-1, 5023, 3)

        all_exps = torch.Tensor(savgol_filter(all_exps.cpu().numpy(), 5, 3, axis=0)).cpu() # smooth GT
        
        rendedimages, lm2d = self.coeffs_to_img(predicted_vertices, all_exps, zero_pose=True)
        debug_video_gen(rendedimages, self.args.result_dir+"/debug_before_ff.mp4", wav_tensor, self.args.fps, sr)

        # cg2real
        debug_video_gen(self.cg2real(rendedimages, start_frame=start_frame), self.args.result_dir+"/debug_cg2real_raw.mp4", wav_tensor, self.args.fps, sr)
        
        exit()



if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Stylization and Seamless Video Dubbing')
    parser.add_argument('--face', default='examples', type=str, help='')
    parser.add_argument('--audio', default='examples', type=str, help='')
    parser.add_argument('--source_dir', default='examples', type=str,help='TODO')
    parser.add_argument('--result_dir', default='examples', type=str,help='TODO')
    parser.add_argument('--backend', default='wav2lip', type=str,help='wav2lip or pcavs')
    parser.add_argument('--result_tag', default='result', type=str,help='TODO')
    parser.add_argument('--netR', default='unet_256', type=str,help='TODO')
    parser.add_argument('--render_path', default='', type=str,help='TODO')
    parser.add_argument('--ngf', default=16, type=int,help='TODO')
    parser.add_argument('--fps', default=20, type=int,help='TODO')
    parser.add_argument('--mask', default=100, type=int,help='TODO')
    parser.add_argument('--mask_type', default='v3', type=str,help='TODO')
    parser.add_argument('--image_size', default=256, type=int,help='TODO')
    parser.add_argument('--input_nc', default=21, type=int,help='TODO')
    parser.add_argument('--output_nc', default=3, type=int,help='TODO')
    parser.add_argument('--renderbs', default=16, type=int,help='TODO')
    parser.add_argument('--tframes', default=1, type=int,help='TODO')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--enhance', action='store_true')
    parser.add_argument('--phone', action='store_true')

    #### faceformer
    parser.add_argument("--model_name", type=str, default="VOCA")
    parser.add_argument("--dataset", type=str, default="vocaset", help='vocaset or BIWI')
    parser.add_argument("--feature_dim", type=int, default=64, help='64 for vocaset; 128 for BIWI')
    parser.add_argument("--period", type=int, default=30, help='period in PPE - 30 for vocaset; 25 for BIWI')
    parser.add_argument("--vertice_dim", type=int, default=5023*3, help='number of vertices - 5023*3 for vocaset; 23370*3 for BIWI')
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--train_subjects", type=str, default="FaceTalk_170728_03272_TA ")
    parser.add_argument("--test_subjects", type=str, default="FaceTalk_170809_00138_TA FaceTalk_170731_00024_TA")
    parser.add_argument("--condition", type=str, default="FaceTalk_170904_00128_TA", help='select a conditioning subject from train_subjects')
    parser.add_argument("--subject", type=str, default="FaceTalk_170731_00024_TA", help='select a subject from test_subjects or train_subjects')
    parser.add_argument("--background_black", type=bool, default=True, help='whether to use black background')
    parser.add_argument("--template_path", type=str, default="templates.pkl", help='path of the personalized templates')
    parser.add_argument("--render_template_path", type=str, default="templates", help='path of the mesh in BIWI/FLAME topology')

    opt = parser.parse_args()

    opt.img_size = 96
    opt.static = True
    opt.device = torch.device("cuda")

    a2m = Audio2Mesh(opt)

    print('link start!')
    t = time.time()
    # 02780
    a2m.run(opt.face, opt.audio, 0)
    print(time.time() - t)