Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,155 +2,82 @@ import os
|
|
2 |
import sys
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import importlib
|
6 |
from huggingface_hub import hf_hub_download, snapshot_download
|
7 |
-
from typing import List, Union
|
8 |
-
from pathlib import Path
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
Mendownload repository dan mengatur Python path.
|
19 |
-
"""
|
20 |
-
repo_path = snapshot_download(repo_id="VLabTech/cognitive_net")
|
21 |
-
repo_path = Path(repo_path)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
parent_path = str(repo_path.parent)
|
28 |
-
if parent_path not in sys.path:
|
29 |
-
sys.path.insert(0, parent_path)
|
30 |
-
|
31 |
-
def load_model(self) -> None:
|
32 |
-
"""
|
33 |
-
Memuat model cognitive_net dan checkpoint-nya.
|
34 |
-
Raises:
|
35 |
-
ImportError: Jika modul tidak dapat diimport
|
36 |
-
RuntimeError: Jika terjadi kesalahan saat memuat model
|
37 |
-
"""
|
38 |
-
try:
|
39 |
-
self.setup_environment()
|
40 |
-
|
41 |
-
import cognitive_net
|
42 |
-
importlib.reload(cognitive_net)
|
43 |
-
from cognitive_net.network import DynamicCognitiveNet
|
44 |
-
|
45 |
-
self.model_class = DynamicCognitiveNet
|
46 |
-
self.model = DynamicCognitiveNet(input_size=5, output_size=2)
|
47 |
-
|
48 |
-
# Muat weights
|
49 |
-
checkpoint_path = hf_hub_download(
|
50 |
-
repo_id="VLabTech/cognitive_net",
|
51 |
-
filename="model.pt"
|
52 |
-
)
|
53 |
-
self.model.load_state_dict(torch.load(checkpoint_path))
|
54 |
-
self.model.eval()
|
55 |
-
|
56 |
-
except ImportError as e:
|
57 |
-
raise ImportError(f"Gagal mengimport cognitive_net: {str(e)}")
|
58 |
-
except Exception as e:
|
59 |
-
raise RuntimeError(f"Gagal memuat model: {str(e)}")
|
60 |
-
|
61 |
-
def parse_input(self, input_text: str) -> List[float]:
|
62 |
-
"""
|
63 |
-
Mengurai input text menjadi list of floats.
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
List of float values
|
70 |
-
|
71 |
-
Raises:
|
72 |
-
ValueError: Jika format input tidak valid
|
73 |
-
"""
|
74 |
-
try:
|
75 |
-
values = [float(x.strip()) for x in input_text.split(",")]
|
76 |
-
if len(values) != 5:
|
77 |
-
raise ValueError(
|
78 |
-
f"Dibutuhkan tepat 5 nilai (dipisahkan koma). "
|
79 |
-
f"Anda memasukkan {len(values)} nilai."
|
80 |
-
)
|
81 |
-
return values
|
82 |
-
except ValueError as e:
|
83 |
-
raise ValueError(f"Format input tidak valid: {str(e)}")
|
84 |
-
|
85 |
-
def predict(self, input_text: str) -> str:
|
86 |
-
"""
|
87 |
-
Memproses input dan menghasilkan prediksi.
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Generate prediction
|
103 |
-
input_tensor = torch.tensor(values, dtype=torch.float32)
|
104 |
-
with torch.no_grad():
|
105 |
-
output = self.model(input_tensor)
|
106 |
-
|
107 |
-
# Format output
|
108 |
-
result = "Hasil Prediksi:\n"
|
109 |
-
result += f"Output 1: {output[0]:.4f}\n"
|
110 |
-
result += f"Output 2: {output[1]:.4f}"
|
111 |
-
|
112 |
-
return result
|
113 |
-
|
114 |
-
except ValueError as e:
|
115 |
-
return f"Error: {str(e)}"
|
116 |
-
except Exception as e:
|
117 |
-
return f"Error: {str(e)}\nTrace: {e.__traceback__}"
|
118 |
-
|
119 |
-
def create_demo() -> gr.Interface:
|
120 |
-
"""
|
121 |
-
Membuat dan mengkonfigurasi Gradio interface.
|
122 |
-
|
123 |
-
Returns:
|
124 |
-
Gradio Interface object
|
125 |
-
"""
|
126 |
-
app = CognitiveNetApp()
|
127 |
-
|
128 |
-
demo = gr.Interface(
|
129 |
-
fn=app.predict,
|
130 |
-
inputs=gr.Textbox(
|
131 |
-
label="Input Values",
|
132 |
-
placeholder="Masukkan 5 nilai numerik (pisahkan dengan koma). "
|
133 |
-
"Contoh: 1.0, 2.0, 3.0, 4.0, 5.0"
|
134 |
-
),
|
135 |
-
outputs=gr.Textbox(label="Hasil Prediksi"),
|
136 |
-
title="Cognitive Network Demo",
|
137 |
-
description="""
|
138 |
-
## Cognitive Network Inference Demo
|
139 |
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
-
demo = create_demo()
|
156 |
demo.launch()
|
|
|
2 |
import sys
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
5 |
from huggingface_hub import hf_hub_download, snapshot_download
|
|
|
|
|
6 |
|
7 |
+
def predict(input_text: str) -> str:
|
8 |
+
"""
|
9 |
+
Memproses input dan menghasilkan prediksi
|
10 |
+
"""
|
11 |
+
try:
|
12 |
+
# Parse input
|
13 |
+
values = [float(x.strip()) for x in input_text.split(",")]
|
14 |
+
if len(values) != 5:
|
15 |
+
return f"Error: Masukkan tepat 5 nilai (dipisahkan koma). Anda memasukkan {len(values)} nilai."
|
16 |
+
|
17 |
+
# Download dan load kode model
|
18 |
+
repo_path = snapshot_download(
|
19 |
+
repo_id="VLabTech/cognitive_net",
|
20 |
+
local_dir="./model_repo"
|
21 |
+
)
|
22 |
|
23 |
+
# Import files secara langsung
|
24 |
+
import sys
|
25 |
+
sys.path.append("./model_repo")
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Import komponen model
|
28 |
+
from memory import CognitiveMemory
|
29 |
+
from node import CognitiveNode
|
30 |
+
from network import DynamicCognitiveNet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Setup model
|
33 |
+
model = DynamicCognitiveNet(input_size=5, output_size=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Load weights
|
36 |
+
checkpoint_path = hf_hub_download(
|
37 |
+
repo_id="VLabTech/cognitive_net",
|
38 |
+
filename="model.pt",
|
39 |
+
local_dir="./model_weights"
|
40 |
+
)
|
41 |
+
model.load_state_dict(torch.load(checkpoint_path))
|
42 |
+
model.eval()
|
43 |
+
|
44 |
+
# Generate prediction
|
45 |
+
input_tensor = torch.tensor(values, dtype=torch.float32)
|
46 |
+
with torch.no_grad():
|
47 |
+
output = model(input_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Format output
|
50 |
+
result = "Hasil Prediksi:\n"
|
51 |
+
result += f"Output 1: {output[0]:.4f}\n"
|
52 |
+
result += f"Output 2: {output[1]:.4f}"
|
53 |
|
54 |
+
return result
|
55 |
+
|
56 |
+
except ValueError as e:
|
57 |
+
return f"Error dalam format input: {str(e)}"
|
58 |
+
except Exception as e:
|
59 |
+
return f"Error: {str(e)}"
|
60 |
+
|
61 |
+
# Setup Gradio Interface
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=predict,
|
64 |
+
inputs=gr.Textbox(
|
65 |
+
label="Input Values",
|
66 |
+
placeholder="Masukkan 5 nilai numerik (pisahkan dengan koma). Contoh: 1.0, 2.0, 3.0, 4.0, 5.0"
|
67 |
+
),
|
68 |
+
outputs=gr.Textbox(label="Hasil Prediksi"),
|
69 |
+
title="Cognitive Network Demo",
|
70 |
+
description="""
|
71 |
+
## Cognitive Network Inference Demo
|
72 |
+
Model ini menerima 5 input numerik dan menghasilkan 2 output numerik menggunakan
|
73 |
+
arsitektur Cognitive Network yang terinspirasi dari cara kerja otak biologis.
|
74 |
+
""",
|
75 |
+
examples=[
|
76 |
+
["1.0, 2.0, 3.0, 4.0, 5.0"],
|
77 |
+
["0.5, -1.0, 2.5, 1.5, -0.5"],
|
78 |
+
["0.1, 0.2, 0.3, 0.4, 0.5"]
|
79 |
+
]
|
80 |
+
)
|
81 |
|
82 |
if __name__ == "__main__":
|
|
|
83 |
demo.launch()
|