Spaces:
Running
Running
File size: 14,406 Bytes
b9288df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from copy import deepcopy
from tqdm import tqdm
from timm.utils import accuracy
from .protonet import ProtoNet
from .utils import trunc_normal_, DiffAugment
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
@torch.jit.script
def entropy_loss(x):
return torch.sum(-F.softmax(x, 1) * F.log_softmax(x, 1), 1).mean()
def unique_indices(x):
"""
Ref: https://github.com/rusty1s/pytorch_unique
"""
unique, inverse = torch.unique(x, sorted=True, return_inverse=True)
perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device)
inverse, perm = inverse.flip([0]), perm.flip([0])
perm = inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm)
return unique, perm
class ProtoNet_Auto_Finetune(ProtoNet):
def __init__(self, backbone, num_iters=50, aug_prob=0.9,
aug_types=['color', 'translation'], lr_lst=[0.01, 0.001, 0.0001]):
super().__init__(backbone)
self.num_iters = num_iters
self.lr_lst = lr_lst
self.aug_types = aug_types
self.aug_prob = aug_prob
state_dict = backbone.state_dict()
self.backbone_state = deepcopy(state_dict)
def forward(self, supp_x, supp_y, qry_x):
"""
supp_x.shape = [B, nSupp, C, H, W]
supp_y.shape = [B, nSupp]
qry_x.shape = [B, nQry, C, H, W]
"""
B, nSupp, C, H, W = supp_x.shape
num_classes = supp_y.max() + 1 # NOTE: assume B==1
device = qry_x.device
criterion = nn.CrossEntropyLoss()
supp_x = supp_x.view(-1, C, H, W)
qry_x = qry_x.view(-1, C, H, W)
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
supp_y = supp_y.view(-1)
def single_step(z, mode=True, x=None, y=None, y_1hot=None):
'''
z = Aug(supp_x) or qry_x
global vars: supp_x, supp_y, supp_y_1hot
'''
with torch.set_grad_enabled(mode):
# recalculate prototypes from supp_x with updated backbone
proto_f = self.backbone.forward(x).unsqueeze(0)
if y_1hot is None:
prototypes = proto_f
else:
prototypes = torch.bmm(y_1hot.float(), proto_f) # B, nC, d
prototypes = prototypes / y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
# compute feature for z
feat = self.backbone.forward(z)
feat = feat.view(B, z.shape[0], -1) # B, nQry, d
# classification
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
loss = None
if mode: # if enable grad, compute loss
loss = criterion(logits.view(len(y), -1), y)
return logits, loss
# load trained weights
self.backbone.load_state_dict(self.backbone_state, strict=True)
#zz = DiffAugment(supp_x, ["color", "offset", "offset_h", "offset_v", "translation", "cutout"], 1., detach=True)
proto_y, proto_i = unique_indices(supp_y)
proto_x = supp_x[proto_i]
zz_i = np.setdiff1d(range(len(supp_x)), proto_i.cpu().numpy())
zz_x = supp_x[zz_i]
zz_y = supp_y[zz_i]
best_lr = 0
max_acc1 = 0
if len(zz_y) > 0:
# eval non-finetuned weights (lr=0)
logits, _ = single_step(zz_x, False, x=proto_x)
max_acc1 = accuracy(logits.view(len(zz_y), -1), zz_y, topk=(1,))[0]
print(f'## *lr = 0: acc1 = {max_acc1}\n')
for lr in self.lr_lst:
# create optimizer
opt = torch.optim.Adam(self.backbone.parameters(),
lr=lr,
betas=(0.9, 0.999),
weight_decay=0.)
# main loop
_num_iters = 50
pbar = tqdm(range(_num_iters)) if is_main_process() else range(_num_iters)
for i in pbar:
opt.zero_grad()
z = DiffAugment(proto_x, self.aug_types, self.aug_prob, detach=True)
_, loss = single_step(z, True, x=proto_x, y=proto_y)
loss.backward()
opt.step()
if is_main_process():
pbar.set_description(f' << lr = {lr}: loss = {loss.item()}')
logits, _ = single_step(zz_x, False, x=proto_x)
acc1 = accuracy(logits.view(len(zz_y), -1), zz_y, topk=(1,))[0]
print(f'## *lr = {lr}: acc1 = {acc1}\n')
if acc1 > max_acc1:
max_acc1 = acc1
best_lr = lr
# reset backbone state
self.backbone.load_state_dict(self.backbone_state, strict=True)
print(f'***Best lr = {best_lr} with acc1 = {max_acc1}.\nStart final loop...\n')
# create optimizer
opt = torch.optim.Adam(self.backbone.parameters(),
lr=best_lr,
betas=(0.9, 0.999),
weight_decay=0.)
# main loop
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
for i in pbar:
opt.zero_grad()
z = DiffAugment(supp_x, self.aug_types, self.aug_prob, detach=True)
_, loss = single_step(z, True, x=supp_x, y=supp_y, y_1hot=supp_y_1hot)
loss.backward()
opt.step()
if is_main_process():
pbar.set_description(f' >> lr = {best_lr}: loss = {loss.item()}')
logits, _ = single_step(qry_x, False, x=supp_x, y_1hot=supp_y_1hot) # supp_x has to pair with y_1hot
return logits
class ProtoNet_Finetune(ProtoNet):
def __init__(self, backbone, num_iters=50, lr=5e-2, aug_prob=0.9,
aug_types=['color', 'translation']):
super().__init__(backbone)
self.num_iters = num_iters
self.lr = lr
self.aug_types = aug_types
self.aug_prob = aug_prob
def load_state_dict(self, state_dict, strict=True):
super().load_state_dict(state_dict, strict)
state_dict = self.backbone.state_dict()
self.backbone_state = deepcopy(state_dict)
def forward(self, supp_x, supp_y, x):
"""
supp_x.shape = [B, nSupp, C, H, W]
supp_y.shape = [B, nSupp]
x.shape = [B, nQry, C, H, W]
"""
# reset backbone state
self.backbone.load_state_dict(self.backbone_state, strict=True)
if self.lr == 0:
return super().forward(supp_x, supp_y, x)
B, nSupp, C, H, W = supp_x.shape
num_classes = supp_y.max() + 1 # NOTE: assume B==1
device = x.device
criterion = nn.CrossEntropyLoss()
supp_x = supp_x.view(-1, C, H, W)
x = x.view(-1, C, H, W)
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
supp_y = supp_y.view(-1)
# create optimizer
opt = torch.optim.Adam(self.backbone.parameters(),
lr=self.lr,
betas=(0.9, 0.999),
weight_decay=0.)
def single_step(z, mode=True):
'''
z = Aug(supp_x) or x
'''
with torch.set_grad_enabled(mode):
# recalculate prototypes from supp_x with updated backbone
supp_f = self.backbone.forward(supp_x)
supp_f = supp_f.view(B, nSupp, -1)
prototypes = torch.bmm(supp_y_1hot.float(), supp_f) # B, nC, d
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
# compute feature for z
feat = self.backbone.forward(z)
feat = feat.view(B, z.shape[0], -1) # B, nQry, d
# classification
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
loss = None
if mode: # if enable grad, compute loss
loss = criterion(logits.view(B*nSupp, -1), supp_y)
return logits, loss
# main loop
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
for i in pbar:
opt.zero_grad()
z = DiffAugment(supp_x, self.aug_types, self.aug_prob, detach=True)
_, loss = single_step(z, True)
loss.backward()
opt.step()
if is_main_process():
pbar.set_description(f'lr{self.lr}, nSupp{nSupp}, nQry{x.shape[0]}: loss = {loss.item()}')
logits, _ = single_step(x, False)
return logits
class ProtoNet_AdaTok(ProtoNet):
def __init__(self, backbone, num_adapters=1, num_iters=50, lr=5e-2, momentum=0.9, weight_decay=0.):
super().__init__(backbone)
self.num_adapters = num_adapters
self.num_iters = num_iters
self.lr = lr
self.momentum = momentum
self.weight_decay = weight_decay
def forward(self, supp_x, supp_y, x):
"""
supp_x.shape = [B, nSupp, C, H, W]
supp_y.shape = [B, nSupp]
x.shape = [B, nQry, C, H, W]
"""
B, nSupp, C, H, W = supp_x.shape
nQry = x.shape[1]
num_classes = supp_y.max() + 1 # NOTE: assume B==1
device = x.device
criterion = nn.CrossEntropyLoss()
supp_x = supp_x.view(-1, C, H, W)
x = x.view(-1, C, H, W)
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
supp_y = supp_y.view(-1)
# prepare adapter tokens
ada_tokens = torch.zeros(1, self.num_adapters, self.backbone.embed_dim, device=device)
trunc_normal_(ada_tokens, std=.02)
ada_tokens = ada_tokens.detach().requires_grad_()
#optimizer = torch.optim.SGD([ada_tokens],
optimizer = torch.optim.Adadelta([ada_tokens],
lr=self.lr,
#momentum=self.momentum,
weight_decay=self.weight_decay)
def single_step(mode=True):
with torch.set_grad_enabled(mode):
supp_f = self.backbone.forward(supp_x, ada_tokens)
supp_f = supp_f.view(B, nSupp, -1)
# B, nC, nSupp x B, nSupp, d = B, nC, d
prototypes = torch.bmm(supp_y_1hot.float(), supp_f)
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
if mode == False: # no grad
feat = self.backbone.forward(x, ada_tokens)
feat = feat.view(B, nQry, -1) # B, nQry, d
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
loss = None
else:
with torch.enable_grad():
logits = self.cos_classifier(prototypes, supp_f) # B, nQry, nC
loss = criterion(logits.view(B*nSupp, -1), supp_y)
return logits, loss
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
for i in pbar:
optimizer.zero_grad()
_, loss = single_step(True)
loss.backward()
optimizer.step()
if is_main_process():
pbar.set_description(f'loss = {loss.item()}')
logits, _ = single_step(False)
return logits
class ProtoNet_AdaTok_EntMin(ProtoNet):
def __init__(self, backbone, num_adapters=1, num_iters=50, lr=5e-3, momentum=0.9, weight_decay=0.):
super().__init__(backbone)
self.num_adapters = num_adapters
self.num_iters = num_iters
self.lr = lr
self.momentum = momentum
self.weight_decay = weight_decay
def forward(self, supp_x, supp_y, x):
"""
supp_x.shape = [B, nSupp, C, H, W]
supp_y.shape = [B, nSupp]
x.shape = [B, nQry, C, H, W]
"""
B, nSupp, C, H, W = supp_x.shape
num_classes = supp_y.max() + 1 # NOTE: assume B==1
device = x.device
criterion = entropy_loss
supp_x = supp_x.view(-1, C, H, W)
x = x.view(-1, C, H, W)
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
# adapter tokens
ada_tokens = torch.zeros(1, self.num_adapters, self.backbone.embed_dim, device=device)
trunc_normal_(ada_tokens, std=.02)
ada_tokens = ada_tokens.detach().requires_grad_()
optimizer = torch.optim.SGD([ada_tokens],
lr=self.lr,
momentum=self.momentum,
weight_decay=self.weight_decay)
def single_step(mode=True):
with torch.set_grad_enabled(mode):
supp_f = self.backbone.forward(supp_x, ada_tokens)
supp_f = supp_f.view(B, nSupp, -1)
# B, nC, nSupp x B, nSupp, d = B, nC, d
prototypes = torch.bmm(supp_y_1hot.float(), supp_f)
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
feat = self.backbone.forward(x, ada_tokens)
feat = feat.view(B, x.shape[1], -1) # B, nQry, d
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
loss = criterion(logits.view(-1, num_classes))
return logits, loss
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
for i in pbar:
optimizer.zero_grad()
_, loss = single_step(True)
loss.backward()
optimizer.step()
if is_main_process():
pbar.set_description(f'loss = {loss.item()}')
logits, _ = single_step(False)
return logits
|