Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
|
| 5 |
-
|
|
|
|
| 6 |
import spaces
|
| 7 |
from PIL import Image
|
| 8 |
import requests
|
|
@@ -13,18 +14,7 @@ translator = Translator()
|
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
# Constants
|
| 15 |
model = "stabilityai/stable-diffusion-3-medium"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
model_path = snapshot_download(
|
| 19 |
-
repo_id=model,
|
| 20 |
-
revision="refs/pr/26",
|
| 21 |
-
repo_type="model",
|
| 22 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
| 23 |
-
local_dir="model",
|
| 24 |
-
token=HF_TOKEN,
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
CSS = """
|
| 30 |
.gradio-container {
|
|
@@ -47,7 +37,7 @@ JS = """function () {
|
|
| 47 |
|
| 48 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 49 |
if torch.cuda.is_available():
|
| 50 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 51 |
|
| 52 |
|
| 53 |
# Function
|
|
@@ -60,6 +50,10 @@ def generate_image(
|
|
| 60 |
scale=1.5,
|
| 61 |
steps=30,
|
| 62 |
clip=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
prompt = str(translator.translate(prompt, 'English'))
|
| 65 |
|
|
@@ -73,6 +67,7 @@ def generate_image(
|
|
| 73 |
guidance_scale=scale,
|
| 74 |
num_inference_steps=steps,
|
| 75 |
clip_skip=clip,
|
|
|
|
| 76 |
)
|
| 77 |
return image.images[0]
|
| 78 |
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
| 7 |
import spaces
|
| 8 |
from PIL import Image
|
| 9 |
import requests
|
|
|
|
| 14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 15 |
# Constants
|
| 16 |
model = "stabilityai/stable-diffusion-3-medium"
|
| 17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
CSS = """
|
| 20 |
.gradio-container {
|
|
|
|
| 37 |
|
| 38 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 39 |
if torch.cuda.is_available():
|
| 40 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(model, torch_dtype=torch.float16, revision="refs/pr/26").to("cuda")
|
| 41 |
|
| 42 |
|
| 43 |
# Function
|
|
|
|
| 50 |
scale=1.5,
|
| 51 |
steps=30,
|
| 52 |
clip=3):
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
seed = random.randint(0, MAX_SEED)
|
| 56 |
+
generator = torch.Generator().manual_seed(seed)
|
| 57 |
|
| 58 |
prompt = str(translator.translate(prompt, 'English'))
|
| 59 |
|
|
|
|
| 67 |
guidance_scale=scale,
|
| 68 |
num_inference_steps=steps,
|
| 69 |
clip_skip=clip,
|
| 70 |
+
generator = generator,
|
| 71 |
)
|
| 72 |
return image.images[0]
|
| 73 |
|