Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,22 @@
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
-
import spaces
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
-
MODEL_LIST = ["
|
| 9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 10 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
| 11 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 12 |
|
| 13 |
-
TITLE = "<h1><center>
|
| 14 |
|
| 15 |
DESCRIPTION = f"""
|
| 16 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
| 17 |
"""
|
| 18 |
PLACEHOLDER = """
|
| 19 |
<center>
|
| 20 |
-
<p>
|
| 21 |
</center>
|
| 22 |
"""
|
| 23 |
|
|
@@ -36,13 +35,12 @@ h3 {
|
|
| 36 |
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
MODEL_ID,
|
| 39 |
-
torch_dtype=torch.
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
model = model.eval()
|
| 44 |
|
| 45 |
-
@spaces.GPU()
|
| 46 |
def stream_chat(
|
| 47 |
message: str,
|
| 48 |
history: list,
|
|
@@ -54,11 +52,11 @@ def stream_chat(
|
|
| 54 |
):
|
| 55 |
print(f'message: {message}')
|
| 56 |
print(f'history: {history}')
|
| 57 |
-
for resp, history in model.
|
| 58 |
tokenizer,
|
| 59 |
query = message,
|
| 60 |
history = history,
|
| 61 |
-
|
| 62 |
do_sample = False if temperature == 0 else True,
|
| 63 |
top_p = top_p,
|
| 64 |
top_k = top_k,
|
|
@@ -92,7 +90,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 92 |
maximum=8192,
|
| 93 |
step=1,
|
| 94 |
value=1024,
|
| 95 |
-
label="Max
|
| 96 |
render=False,
|
| 97 |
),
|
| 98 |
gr.Slider(
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
MODEL_LIST = ["openbmb/MiniCPM-1B-sft-bf16", "openbmb/MiniCPM-S-1B-sft"]
|
| 8 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 9 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
| 10 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
| 11 |
|
| 12 |
+
TITLE = "<h1><center>MiniCPM-1B-chat</center></h1>"
|
| 13 |
|
| 14 |
DESCRIPTION = f"""
|
| 15 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
| 16 |
"""
|
| 17 |
PLACEHOLDER = """
|
| 18 |
<center>
|
| 19 |
+
<p>MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 1.2B parameters excluding embeddings.</p>
|
| 20 |
</center>
|
| 21 |
"""
|
| 22 |
|
|
|
|
| 35 |
|
| 36 |
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
MODEL_ID,
|
| 38 |
+
torch_dtype=torch.bfloat16,
|
| 39 |
+
device_map='auto',
|
| 40 |
+
trust_remote_code=True)
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 42 |
|
|
|
|
| 43 |
|
|
|
|
| 44 |
def stream_chat(
|
| 45 |
message: str,
|
| 46 |
history: list,
|
|
|
|
| 52 |
):
|
| 53 |
print(f'message: {message}')
|
| 54 |
print(f'history: {history}')
|
| 55 |
+
for resp, history in model.chat(
|
| 56 |
tokenizer,
|
| 57 |
query = message,
|
| 58 |
history = history,
|
| 59 |
+
max_length = max_new_tokens,
|
| 60 |
do_sample = False if temperature == 0 else True,
|
| 61 |
top_p = top_p,
|
| 62 |
top_k = top_k,
|
|
|
|
| 90 |
maximum=8192,
|
| 91 |
step=1,
|
| 92 |
value=1024,
|
| 93 |
+
label="Max Length",
|
| 94 |
render=False,
|
| 95 |
),
|
| 96 |
gr.Slider(
|