Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| import os | |
| from threading import Thread | |
| from polyglot.detect import Detector | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL = "LLaMAX/LLaMAX3-8B-Alpaca" | |
| RELATIVE_MODEL="LLaMAX/LLaMAX3-8B" | |
| TITLE = "<h1><center>LLaMAX3-8B-Translation</center></h1>" | |
| quantization_config = BitsAndBytesConfig(load_in_8bit=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| quantization_config=quantization_config) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| def lang_detector(text): | |
| min_chars = 5 | |
| if len(text) < min_chars: | |
| return "Input text too short" | |
| try: | |
| detector = Detector(text).language | |
| lang_info = str(detector) | |
| code = re.search(r"name: (\w+)", lang_info).group(1) | |
| return code | |
| except Exception as e: | |
| return f"ERROR:{str(e)}" | |
| def Prompt_template(query, src_language, trg_language): | |
| instruction = f'Translate the following sentences from {src_language} to {trg_language}.' | |
| prompt = ( | |
| 'Below is an instruction that describes a task, paired with an input that provides further context. ' | |
| 'Write a response that appropriately completes the request.\n' | |
| f'### Instruction:\n{instruction}\n' | |
| f'### Input:\n{query}\n### Response:' | |
| ) | |
| return prompt | |
| # Unfinished | |
| def chunk_text(): | |
| pass | |
| def translate( | |
| source_text: str, | |
| source_lang: str, | |
| target_lang: str, | |
| max_chunk: int, | |
| max_length: int, | |
| temperature: float): | |
| print(f'Text is - {source_text}') | |
| prompt = Prompt_template(source_text, source_lang, target_lang) | |
| input_ids = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| streamer=streamer, | |
| max_length=max_length, | |
| do_sample=True, | |
| temperature=temperature, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| CSS = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| height: 10vh; | |
| align-content: center; | |
| } | |
| footer { | |
| visibility: hidden; | |
| } | |
| """ | |
| DESCRIPTION = """ | |
| - LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. | |
| - Source Language auto detected, input your Target language and country. | |
| """ | |
| chatbot = gr.Chatbot(height=600) | |
| with gr.Blocks(theme="soft", css=CSS) as demo: | |
| gr.Markdown(TITLE) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| source_lang = gr.Textbox( | |
| label="Source Lang(Auto-Detect)", | |
| value="English", | |
| ) | |
| target_lang = gr.Textbox( | |
| label="Target Lang", | |
| value="Spanish", | |
| ) | |
| max_chunk = gr.Slider( | |
| label="Max tokens Per Chunk", | |
| minimum=512, | |
| maximum=2046, | |
| value=1000, | |
| step=8, | |
| ) | |
| max_length = gr.Slider( | |
| label="Context Window", | |
| minimum=512, | |
| maximum=8192, | |
| value=4096, | |
| step=8, | |
| ) | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=1, | |
| value=0.3, | |
| step=0.1, | |
| ) | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Column(scale=4): | |
| source_text = gr.Textbox( | |
| label="Source Text", | |
| value="How we live is so different from how we ought to live that he who studies "+\ | |
| "what ought to be done rather than what is done will learn the way to his downfall "+\ | |
| "rather than to his preservation.", | |
| lines=10, | |
| ) | |
| output_text = gr.Textbox( | |
| label="Output Text", | |
| lines=10, | |
| ) | |
| with gr.Row(): | |
| submit = gr.Button(value="Submit") | |
| clear = gr.ClearButton([source_text, output_text]) | |
| source_text.change(lang_detector, source_text, source_lang) | |
| submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, max_chunk, max_length, temperature], outputs=[output_text]) | |
| if __name__ == "__main__": | |
| demo.launch() | |