File size: 7,203 Bytes
2ba49a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompts import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from .dancer import lets_dance
from typing import List
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np


class SDImagePipeline(torch.nn.Module):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__()
        self.scheduler = EnhancedDDIMScheduler()
        self.prompter = SDPrompter()
        self.device = device
        self.torch_dtype = torch_dtype
        # models
        self.text_encoder: SDTextEncoder = None
        self.unet: SDUNet = None
        self.vae_decoder: SDVAEDecoder = None
        self.vae_encoder: SDVAEEncoder = None
        self.controlnet: MultiControlNetManager = None
        self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None
        self.ipadapter: SDIpAdapter = None


    def fetch_main_models(self, model_manager: ModelManager):
        self.text_encoder = model_manager.text_encoder
        self.unet = model_manager.unet
        self.vae_decoder = model_manager.vae_decoder
        self.vae_encoder = model_manager.vae_encoder


    def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
        controlnet_units = []
        for config in controlnet_config_units:
            controlnet_unit = ControlNetUnit(
                Annotator(config.processor_id),
                model_manager.get_model_with_model_path(config.model_path),
                config.scale
            )
            controlnet_units.append(controlnet_unit)
        self.controlnet = MultiControlNetManager(controlnet_units)

    
    def fetch_ipadapter(self, model_manager: ModelManager):
        if "ipadapter" in model_manager.model:
            self.ipadapter = model_manager.ipadapter
        if "ipadapter_image_encoder" in model_manager.model:
            self.ipadapter_image_encoder = model_manager.ipadapter_image_encoder


    def fetch_prompter(self, model_manager: ModelManager):
        self.prompter.load_from_model_manager(model_manager)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
        pipe = SDImagePipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_main_models(model_manager)
        pipe.fetch_prompter(model_manager)
        pipe.fetch_controlnet_models(model_manager, controlnet_config_units)
        pipe.fetch_ipadapter(model_manager)
        return pipe
    

    def preprocess_image(self, image):
        image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
        return image
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
        image = image.cpu().permute(1, 2, 0).numpy()
        image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
        return image
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        input_image=None,
        ipadapter_images=None,
        ipadapter_scale=1.0,
        controlnet_image=None,
        denoising_strength=1.0,
        height=512,
        width=512,
        num_inference_steps=20,
        tiled=False,
        tile_size=64,
        tile_stride=32,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if input_image is not None:
            image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
            latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)

        # Encode prompts
        prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True)
        prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False)

        # IP-Adapter
        if ipadapter_images is not None:
            ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
            ipadapter_kwargs_list_posi = self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)
            ipadapter_kwargs_list_nega = self.ipadapter(torch.zeros_like(ipadapter_image_encoding))
        else:
            ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {}, {}

        # Prepare ControlNets
        if controlnet_image is not None:
            controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype)
            controlnet_image = controlnet_image.unsqueeze(1)
        
        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = torch.IntTensor((timestep,))[0].to(self.device)

            # Classifier-free guidance
            noise_pred_posi = lets_dance(
                self.unet, motion_modules=None, controlnet=self.controlnet,
                sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_image,
                tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
                ipadapter_kwargs_list=ipadapter_kwargs_list_posi,
                device=self.device, vram_limit_level=0
            )
            noise_pred_nega = lets_dance(
                self.unet, motion_modules=None, controlnet=self.controlnet,
                sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_image,
                tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
                ipadapter_kwargs_list=ipadapter_kwargs_list_nega,
                device=self.device, vram_limit_level=0
            )
            noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)

            # DDIM
            latents = self.scheduler.step(noise_pred, timestep, latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)

        return image