Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- README.md +102 -102
- app.py +187 -149
- modules/answerer.py +109 -109
- modules/collector.py +69 -69
- modules/db.py +36 -36
- modules/indexer.py +34 -34
- modules/retriever.py +36 -36
- modules/youtube_utils.py +26 -26
- tests/search.py +13 -13
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
README.md
CHANGED
@@ -1,102 +1,102 @@
|
|
1 |
-
---
|
2 |
-
title: youtube-channel-surfer-ai
|
3 |
-
license: mit
|
4 |
-
emoji: "📺"
|
5 |
-
app_file: "app.py"
|
6 |
-
sdk: "gradio"
|
7 |
-
pinned: false
|
8 |
-
python_version: 3.13
|
9 |
-
---
|
10 |
-
|
11 |
-
# 📺 YouTube Metadata Q&A Agent
|
12 |
-
|
13 |
-
This application allows you to index YouTube channels and ask natural language questions about the videos. It leverages **OpenAI embeddings** and **GPT-4o-mini** to provide insightful answers based on video metadata (titles + descriptions), and it displays top relevant videos in a clean, interactive table.
|
14 |
-
|
15 |
-
---
|
16 |
-
|
17 |
-
## Features
|
18 |
-
|
19 |
-
- **Index YouTube Channels**: Provide one or more YouTube channel URLs to index video metadata.
|
20 |
-
- **Search & Answer Questions**: Ask questions about channel content and get answers generated by an LLM.
|
21 |
-
- **Top Video Results**: View top relevant videos in a structured HTML table with clickable links.
|
22 |
-
- **Embedded Video Player**: Watch videos directly in the app using YouTube embeds.
|
23 |
-
- **Refresh Channels**: Update previously indexed channels to include the latest videos.
|
24 |
-
- **Lightweight Storage**: Uses a local **ChromaDB** persistent database to store video embeddings for fast retrieval.
|
25 |
-
- **Structured LLM Output**: LLM returns structured `LLMAnswer` objects with textual answer + top videos for clean rendering.
|
26 |
-
|
27 |
-
---
|
28 |
-
|
29 |
-
## How it Works
|
30 |
-
|
31 |
-
1. **Channel Indexing**:
|
32 |
-
- The app fetches the latest videos from provided YouTube channels using the YouTube Data API.
|
33 |
-
- Video metadata (title, description, channel, video ID) is embedded with OpenAI embeddings and stored in ChromaDB.
|
34 |
-
|
35 |
-
2. **Query & Retrieval**:
|
36 |
-
- User queries are embedded and compared with stored video embeddings.
|
37 |
-
- Top matching videos are retrieved.
|
38 |
-
|
39 |
-
3. **Answer Generation**:
|
40 |
-
- The LLM generates an answer based on the top video metadata.
|
41 |
-
- The answer and top videos are returned as structured data (`LLMAnswer`).
|
42 |
-
|
43 |
-
4. **Rendering**:
|
44 |
-
- Answer text is displayed in Markdown.
|
45 |
-
- Top videos are displayed in a structured HTML table with clickable links and embedded YouTube players.
|
46 |
-
|
47 |
-
---
|
48 |
-
|
49 |
-
## Installation
|
50 |
-
|
51 |
-
## Steps to Run
|
52 |
-
|
53 |
-
1. **Clone the repository:**
|
54 |
-
|
55 |
-
git clone <repo_url>
|
56 |
-
cd youtube_surfer_ai_agent
|
57 |
-
|
58 |
-
2. **Create and activate a virtual environment:**
|
59 |
-
|
60 |
-
- Linux/macOS:
|
61 |
-
|
62 |
-
python -m venv .venv
|
63 |
-
source .venv/bin/activate
|
64 |
-
|
65 |
-
- Windows:
|
66 |
-
|
67 |
-
python -m venv .venv
|
68 |
-
.venv\Scripts\activate
|
69 |
-
|
70 |
-
3. **Install dependencies:**
|
71 |
-
|
72 |
-
pip install -r requirements.txt
|
73 |
-
|
74 |
-
4. **Create a `.env` file** in the project root with your API keys:
|
75 |
-
|
76 |
-
YOUTUBE_API_KEY=your_youtube_api_key
|
77 |
-
OPENAI_API_KEY=your_openai_api_key
|
78 |
-
|
79 |
-
5. **Run the application:**
|
80 |
-
|
81 |
-
python app.py
|
82 |
-
|
83 |
-
6. **Open the Gradio interface** in your browser (default: http://127.0.0.1:7860).
|
84 |
-
|
85 |
-
---
|
86 |
-
|
87 |
-
## How to Use
|
88 |
-
|
89 |
-
- **Index Channels:** Paste one or more YouTube channel URLs (comma or newline separated) and click "Index Channels".
|
90 |
-
- **Refresh Channels:** Use the sidebar "Refresh All Channels" button to update existing channels.
|
91 |
-
- **Ask Questions:** Type a query in the text box and click "Get Answer" to receive a structured response with embedded videos.
|
92 |
-
- **View Indexed Channels:** The sidebar lists all channels that have been indexed with clickable links.
|
93 |
-
|
94 |
-
---
|
95 |
-
|
96 |
-
## Notes
|
97 |
-
|
98 |
-
- The LLM uses structured outputs (`LLMAnswer` + `VideoItem`) internally to produce consistent results.
|
99 |
-
- Top videos are embedded as iframes in the Gradio interface.
|
100 |
-
- You can adjust the number of top videos returned by modifying the `top_k` parameter in `answer_query`.
|
101 |
-
|
102 |
-
---
|
|
|
1 |
+
---
|
2 |
+
title: youtube-channel-surfer-ai
|
3 |
+
license: mit
|
4 |
+
emoji: "📺"
|
5 |
+
app_file: "app.py"
|
6 |
+
sdk: "gradio"
|
7 |
+
pinned: false
|
8 |
+
python_version: 3.13
|
9 |
+
---
|
10 |
+
|
11 |
+
# 📺 YouTube Metadata Q&A Agent
|
12 |
+
|
13 |
+
This application allows you to index YouTube channels and ask natural language questions about the videos. It leverages **OpenAI embeddings** and **GPT-4o-mini** to provide insightful answers based on video metadata (titles + descriptions), and it displays top relevant videos in a clean, interactive table.
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- **Index YouTube Channels**: Provide one or more YouTube channel URLs to index video metadata.
|
20 |
+
- **Search & Answer Questions**: Ask questions about channel content and get answers generated by an LLM.
|
21 |
+
- **Top Video Results**: View top relevant videos in a structured HTML table with clickable links.
|
22 |
+
- **Embedded Video Player**: Watch videos directly in the app using YouTube embeds.
|
23 |
+
- **Refresh Channels**: Update previously indexed channels to include the latest videos.
|
24 |
+
- **Lightweight Storage**: Uses a local **ChromaDB** persistent database to store video embeddings for fast retrieval.
|
25 |
+
- **Structured LLM Output**: LLM returns structured `LLMAnswer` objects with textual answer + top videos for clean rendering.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## How it Works
|
30 |
+
|
31 |
+
1. **Channel Indexing**:
|
32 |
+
- The app fetches the latest videos from provided YouTube channels using the YouTube Data API.
|
33 |
+
- Video metadata (title, description, channel, video ID) is embedded with OpenAI embeddings and stored in ChromaDB.
|
34 |
+
|
35 |
+
2. **Query & Retrieval**:
|
36 |
+
- User queries are embedded and compared with stored video embeddings.
|
37 |
+
- Top matching videos are retrieved.
|
38 |
+
|
39 |
+
3. **Answer Generation**:
|
40 |
+
- The LLM generates an answer based on the top video metadata.
|
41 |
+
- The answer and top videos are returned as structured data (`LLMAnswer`).
|
42 |
+
|
43 |
+
4. **Rendering**:
|
44 |
+
- Answer text is displayed in Markdown.
|
45 |
+
- Top videos are displayed in a structured HTML table with clickable links and embedded YouTube players.
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## Installation
|
50 |
+
|
51 |
+
## Steps to Run
|
52 |
+
|
53 |
+
1. **Clone the repository:**
|
54 |
+
|
55 |
+
git clone <repo_url>
|
56 |
+
cd youtube_surfer_ai_agent
|
57 |
+
|
58 |
+
2. **Create and activate a virtual environment:**
|
59 |
+
|
60 |
+
- Linux/macOS:
|
61 |
+
|
62 |
+
python -m venv .venv
|
63 |
+
source .venv/bin/activate
|
64 |
+
|
65 |
+
- Windows:
|
66 |
+
|
67 |
+
python -m venv .venv
|
68 |
+
.venv\Scripts\activate
|
69 |
+
|
70 |
+
3. **Install dependencies:**
|
71 |
+
|
72 |
+
pip install -r requirements.txt
|
73 |
+
|
74 |
+
4. **Create a `.env` file** in the project root with your API keys:
|
75 |
+
|
76 |
+
YOUTUBE_API_KEY=your_youtube_api_key
|
77 |
+
OPENAI_API_KEY=your_openai_api_key
|
78 |
+
|
79 |
+
5. **Run the application:**
|
80 |
+
|
81 |
+
python app.py
|
82 |
+
|
83 |
+
6. **Open the Gradio interface** in your browser (default: http://127.0.0.1:7860).
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
## How to Use
|
88 |
+
|
89 |
+
- **Index Channels:** Paste one or more YouTube channel URLs (comma or newline separated) and click "Index Channels".
|
90 |
+
- **Refresh Channels:** Use the sidebar "Refresh All Channels" button to update existing channels.
|
91 |
+
- **Ask Questions:** Type a query in the text box and click "Get Answer" to receive a structured response with embedded videos.
|
92 |
+
- **View Indexed Channels:** The sidebar lists all channels that have been indexed with clickable links.
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
## Notes
|
97 |
+
|
98 |
+
- The LLM uses structured outputs (`LLMAnswer` + `VideoItem`) internally to produce consistent results.
|
99 |
+
- Top videos are embedded as iframes in the Gradio interface.
|
100 |
+
- You can adjust the number of top videos returned by modifying the `top_k` parameter in `answer_query`.
|
101 |
+
|
102 |
+
---
|
app.py
CHANGED
@@ -1,149 +1,187 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import gradio as gr
|
4 |
-
import
|
5 |
-
|
6 |
-
from modules.
|
7 |
-
from modules.
|
8 |
-
from modules.
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
cname = val
|
53 |
-
curl =
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
)
|
134 |
-
gr.
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import gradio as gr
|
4 |
+
from gradio_modal import Modal
|
5 |
+
import chromadb
|
6 |
+
from modules.collector import fetch_channel_videos_from_url
|
7 |
+
from modules.db import get_indexed_channels
|
8 |
+
from modules.indexer import index_videos
|
9 |
+
from modules.answerer import answer_query, LLMAnswer, VideoItem, build_video_html
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# -------------------------------
|
15 |
+
# Setup Chroma
|
16 |
+
# -------------------------------
|
17 |
+
client = chromadb.PersistentClient(path="./youtube_db")
|
18 |
+
collection = client.get_or_create_collection("yt_metadata", embedding_function=None)
|
19 |
+
|
20 |
+
|
21 |
+
# -------------------------------
|
22 |
+
# Utils
|
23 |
+
# -------------------------------
|
24 |
+
def refresh_channel(api_key, channel_url: str):
|
25 |
+
"""Fetch + re-index a single channel."""
|
26 |
+
videos = fetch_channel_videos_from_url(api_key, channel_url)
|
27 |
+
for v in videos:
|
28 |
+
v["channel_url"] = channel_url
|
29 |
+
index_videos(videos, collection, channel_url=channel_url)
|
30 |
+
return len(videos)
|
31 |
+
|
32 |
+
|
33 |
+
def index_channels(channel_urls: str):
|
34 |
+
yield "saving ...", gr.update()
|
35 |
+
yt_api_key = os.environ["YOUTUBE_API_KEY"]
|
36 |
+
urls = [u.strip() for u in re.split(r"[\n,]+", channel_urls) if u.strip()]
|
37 |
+
total_videos = sum(refresh_channel(yt_api_key, url) for url in urls)
|
38 |
+
yield (
|
39 |
+
f"✅ Indexed {total_videos} videos from {len(urls)} channels.",
|
40 |
+
list_channels(),
|
41 |
+
)
|
42 |
+
return
|
43 |
+
|
44 |
+
|
45 |
+
def list_channels():
|
46 |
+
channels = get_indexed_channels(collection)
|
47 |
+
if not channels:
|
48 |
+
return "No channels indexed yet."
|
49 |
+
md = []
|
50 |
+
for key, val in channels.items():
|
51 |
+
if isinstance(val, dict):
|
52 |
+
cname = val.get("channel_title", "Unknown")
|
53 |
+
curl = val.get("channel_url", None)
|
54 |
+
else:
|
55 |
+
cname = val
|
56 |
+
curl = key
|
57 |
+
if curl:
|
58 |
+
md.append(f"- **{cname}** ([link]({curl}))")
|
59 |
+
else:
|
60 |
+
md.append(f"- **{cname}**")
|
61 |
+
return "\n".join(md)
|
62 |
+
|
63 |
+
|
64 |
+
def refresh_all_channels():
|
65 |
+
yt_api_key = os.environ["YOUTUBE_API_KEY"]
|
66 |
+
channels = get_indexed_channels(collection)
|
67 |
+
if not channels:
|
68 |
+
return "⚠️ No channels available to refresh.", list_channels()
|
69 |
+
total_videos = 0
|
70 |
+
for key, val in channels.items():
|
71 |
+
url = val.get("channel_url") if isinstance(val, dict) else key
|
72 |
+
if url:
|
73 |
+
total_videos += refresh_channel(yt_api_key, url)
|
74 |
+
return (
|
75 |
+
f"🔄 Refreshed {len(channels)} channels, re-indexed {total_videos} videos.",
|
76 |
+
list_channels(),
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def handle_query(query: str):
|
81 |
+
(answer_text, video_html) = answer_query(query, collection) # returns LLMAnswer
|
82 |
+
return answer_text, video_html
|
83 |
+
|
84 |
+
|
85 |
+
# -------------------------------
|
86 |
+
# Gradio UI
|
87 |
+
# -------------------------------
|
88 |
+
def show_component():
|
89 |
+
return gr.update(visible=True)
|
90 |
+
|
91 |
+
|
92 |
+
def hide_component():
|
93 |
+
return gr.update(visible=False)
|
94 |
+
|
95 |
+
|
96 |
+
def close_component():
|
97 |
+
return gr.update(open=False)
|
98 |
+
|
99 |
+
|
100 |
+
def open_component():
|
101 |
+
return gr.update(open=True)
|
102 |
+
|
103 |
+
|
104 |
+
def disable_component():
|
105 |
+
return gr.update(interactive=False)
|
106 |
+
|
107 |
+
|
108 |
+
def enable_component():
|
109 |
+
return gr.update(interactive=True)
|
110 |
+
|
111 |
+
|
112 |
+
def clear_component():
|
113 |
+
return gr.update(value="")
|
114 |
+
|
115 |
+
|
116 |
+
def show_loading():
|
117 |
+
return gr.update(value="loading")
|
118 |
+
|
119 |
+
|
120 |
+
with gr.Blocks() as demo:
|
121 |
+
gr.Markdown("## 📺 YouTube Metadata Q&A Agent")
|
122 |
+
with Modal(visible=False) as add_channel_modal:
|
123 |
+
channel_input = gr.Textbox(
|
124 |
+
label="Channel URLs",
|
125 |
+
placeholder="Paste one or more YouTube channel URLs (comma or newline separated)",
|
126 |
+
)
|
127 |
+
save_add_channels_btn = gr.Button("Add Channels")
|
128 |
+
index_status = gr.Markdown(label="Index Status", container=False)
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Sidebar() as my_sidebar:
|
132 |
+
gr.Markdown("### 📺 Channels")
|
133 |
+
channel_list = gr.Markdown(list_channels())
|
134 |
+
with gr.Row():
|
135 |
+
refresh_all_btn = gr.Button("🔄 Refresh", size="sm", scale=0)
|
136 |
+
add_channels_btn = gr.Button("+ Add", size="sm", scale=0)
|
137 |
+
refresh_status = gr.Markdown(label="Refresh Status", container=False)
|
138 |
+
refresh_all_btn.click(
|
139 |
+
fn=refresh_all_channels,
|
140 |
+
inputs=None,
|
141 |
+
outputs=[refresh_status, channel_list],
|
142 |
+
)
|
143 |
+
add_channels_btn.click(close_component, outputs=[my_sidebar]).then(
|
144 |
+
show_component, outputs=[add_channel_modal]
|
145 |
+
)
|
146 |
+
save_add_channels_btn.click(
|
147 |
+
disable_component, outputs=[save_add_channels_btn]
|
148 |
+
).then(
|
149 |
+
index_channels,
|
150 |
+
inputs=[channel_input],
|
151 |
+
outputs=[index_status, channel_list],
|
152 |
+
).then(
|
153 |
+
hide_component, outputs=[add_channel_modal]
|
154 |
+
).then(
|
155 |
+
open_component, outputs=[my_sidebar]
|
156 |
+
).then(
|
157 |
+
enable_component, outputs=[save_add_channels_btn]
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Column(scale=3):
|
161 |
+
question = gr.Textbox(
|
162 |
+
label="Ask a Question",
|
163 |
+
placeholder="e.g., What topics did they cover on AI ethics?",
|
164 |
+
)
|
165 |
+
gr.Examples(
|
166 |
+
[
|
167 |
+
"Show me some videos that mention Ranganatha.",
|
168 |
+
"Slokas that mention gajendra moksham",
|
169 |
+
],
|
170 |
+
inputs=question,
|
171 |
+
)
|
172 |
+
|
173 |
+
answer = gr.Markdown()
|
174 |
+
video_embed = gr.HTML() # iframe embeds will render here
|
175 |
+
|
176 |
+
ask_btn = gr.Button("Get Answer")
|
177 |
+
ask_status = gr.Markdown()
|
178 |
+
ask_btn.click(show_loading, outputs=[ask_status]).then(
|
179 |
+
disable_component, outputs=[ask_btn]
|
180 |
+
).then(handle_query, inputs=question, outputs=[answer, video_embed]).then(
|
181 |
+
enable_component, outputs=[ask_btn]
|
182 |
+
).then(
|
183 |
+
clear_component, outputs=[ask_status]
|
184 |
+
)
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
demo.launch()
|
modules/answerer.py
CHANGED
@@ -1,109 +1,109 @@
|
|
1 |
-
# -------------------------------
|
2 |
-
# 4. Answerer
|
3 |
-
# -------------------------------
|
4 |
-
from typing import List
|
5 |
-
from pydantic import BaseModel
|
6 |
-
from openai import OpenAI
|
7 |
-
from modules.retriever import retrieve_videos
|
8 |
-
|
9 |
-
# -------------------------------
|
10 |
-
# Structured Output Classes
|
11 |
-
# -------------------------------
|
12 |
-
class VideoItem(BaseModel):
|
13 |
-
video_id: str
|
14 |
-
title: str
|
15 |
-
channel: str
|
16 |
-
description: str
|
17 |
-
|
18 |
-
class LLMAnswer(BaseModel):
|
19 |
-
answer_text: str
|
20 |
-
top_videos: List[VideoItem]
|
21 |
-
|
22 |
-
# -------------------------------
|
23 |
-
# Main Function
|
24 |
-
# -------------------------------
|
25 |
-
def answer_query(query: str, collection, top_k: int = 5) -> LLMAnswer:
|
26 |
-
"""
|
27 |
-
Answer a user query using YouTube video metadata.
|
28 |
-
Returns an LLMAnswer object with textual answer + list of videos.
|
29 |
-
"""
|
30 |
-
results = retrieve_videos(query, collection, top_k=top_k)
|
31 |
-
|
32 |
-
if not results:
|
33 |
-
return LLMAnswer(answer_text="No relevant videos found.", top_videos=[])
|
34 |
-
|
35 |
-
# Build context lines for the LLM
|
36 |
-
context_lines = []
|
37 |
-
top_videos_list = []
|
38 |
-
for r in results:
|
39 |
-
# Ensure each result is a dict
|
40 |
-
if not isinstance(r, dict):
|
41 |
-
continue
|
42 |
-
vid_id = r.get("video_id", "")
|
43 |
-
title = r.get("video_title") or r.get("title", "")
|
44 |
-
channel = r.get("channel") or r.get("channel_title", "")
|
45 |
-
description = r.get("description", "")
|
46 |
-
context_lines.append(f"- {title} ({channel}) (https://youtube.com/watch?v={vid_id})\n description: {description}")
|
47 |
-
|
48 |
-
top_videos_list.append(
|
49 |
-
VideoItem(
|
50 |
-
video_id=vid_id,
|
51 |
-
title=title,
|
52 |
-
channel=channel,
|
53 |
-
description=description
|
54 |
-
)
|
55 |
-
)
|
56 |
-
|
57 |
-
context_text = "\n".join(context_lines)
|
58 |
-
|
59 |
-
# Call LLM with structured output
|
60 |
-
client = OpenAI()
|
61 |
-
response = client.chat.completions.parse(
|
62 |
-
model="gpt-4o-mini",
|
63 |
-
messages=[
|
64 |
-
{
|
65 |
-
"role": "system",
|
66 |
-
"content": (
|
67 |
-
"You are a helpful assistant that answers questions using YouTube video metadata. "
|
68 |
-
"Return your response strictly as the LLMAnswer class, including 'answer_text' and a list of 'top_videos'."
|
69 |
-
)
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"role": "user",
|
73 |
-
"content": f"Question: {query}\n\nRelevant videos:\n{context_text}\n\nAnswer based only on this."
|
74 |
-
}
|
75 |
-
],
|
76 |
-
response_format=LLMAnswer
|
77 |
-
)
|
78 |
-
|
79 |
-
llm_answer = response.choices[0].message.parsed # already LLMAnswer object
|
80 |
-
answer_text = llm_answer.answer_text
|
81 |
-
video_html = build_video_html(llm_answer.top_videos)
|
82 |
-
return answer_text, video_html
|
83 |
-
|
84 |
-
|
85 |
-
def build_video_html(videos: list[VideoItem]) -> str:
|
86 |
-
"""Build a clean HTML table from top_videos."""
|
87 |
-
if not videos:
|
88 |
-
return "<p>No relevant videos found.</p>"
|
89 |
-
|
90 |
-
html = """
|
91 |
-
<table border="1" style="border-collapse: collapse; width: 100%;">
|
92 |
-
<tr>
|
93 |
-
<th>Title</th>
|
94 |
-
<th>Channel</th>
|
95 |
-
<th>Description</th>
|
96 |
-
<th>Watch</th>
|
97 |
-
</tr>
|
98 |
-
"""
|
99 |
-
for v in videos:
|
100 |
-
html += f"""
|
101 |
-
<tr>
|
102 |
-
<td>{v.title}</td>
|
103 |
-
<td>{v.channel}</td>
|
104 |
-
<td>{v.description}</td>
|
105 |
-
<td><a href="https://youtube.com/watch?v={v.video_id}" target="_blank">▶️ Watch</a></td>
|
106 |
-
</tr>
|
107 |
-
"""
|
108 |
-
html += "</table>"
|
109 |
-
return html
|
|
|
1 |
+
# -------------------------------
|
2 |
+
# 4. Answerer
|
3 |
+
# -------------------------------
|
4 |
+
from typing import List
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from openai import OpenAI
|
7 |
+
from modules.retriever import retrieve_videos
|
8 |
+
|
9 |
+
# -------------------------------
|
10 |
+
# Structured Output Classes
|
11 |
+
# -------------------------------
|
12 |
+
class VideoItem(BaseModel):
|
13 |
+
video_id: str
|
14 |
+
title: str
|
15 |
+
channel: str
|
16 |
+
description: str
|
17 |
+
|
18 |
+
class LLMAnswer(BaseModel):
|
19 |
+
answer_text: str
|
20 |
+
top_videos: List[VideoItem]
|
21 |
+
|
22 |
+
# -------------------------------
|
23 |
+
# Main Function
|
24 |
+
# -------------------------------
|
25 |
+
def answer_query(query: str, collection, top_k: int = 5) -> LLMAnswer:
|
26 |
+
"""
|
27 |
+
Answer a user query using YouTube video metadata.
|
28 |
+
Returns an LLMAnswer object with textual answer + list of videos.
|
29 |
+
"""
|
30 |
+
results = retrieve_videos(query, collection, top_k=top_k)
|
31 |
+
|
32 |
+
if not results:
|
33 |
+
return LLMAnswer(answer_text="No relevant videos found.", top_videos=[])
|
34 |
+
|
35 |
+
# Build context lines for the LLM
|
36 |
+
context_lines = []
|
37 |
+
top_videos_list = []
|
38 |
+
for r in results:
|
39 |
+
# Ensure each result is a dict
|
40 |
+
if not isinstance(r, dict):
|
41 |
+
continue
|
42 |
+
vid_id = r.get("video_id", "")
|
43 |
+
title = r.get("video_title") or r.get("title", "")
|
44 |
+
channel = r.get("channel") or r.get("channel_title", "")
|
45 |
+
description = r.get("description", "")
|
46 |
+
context_lines.append(f"- {title} ({channel}) (https://youtube.com/watch?v={vid_id})\n description: {description}")
|
47 |
+
|
48 |
+
top_videos_list.append(
|
49 |
+
VideoItem(
|
50 |
+
video_id=vid_id,
|
51 |
+
title=title,
|
52 |
+
channel=channel,
|
53 |
+
description=description
|
54 |
+
)
|
55 |
+
)
|
56 |
+
|
57 |
+
context_text = "\n".join(context_lines)
|
58 |
+
|
59 |
+
# Call LLM with structured output
|
60 |
+
client = OpenAI()
|
61 |
+
response = client.chat.completions.parse(
|
62 |
+
model="gpt-4o-mini",
|
63 |
+
messages=[
|
64 |
+
{
|
65 |
+
"role": "system",
|
66 |
+
"content": (
|
67 |
+
"You are a helpful assistant that answers questions using YouTube video metadata. "
|
68 |
+
"Return your response strictly as the LLMAnswer class, including 'answer_text' and a list of 'top_videos'."
|
69 |
+
)
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"role": "user",
|
73 |
+
"content": f"Question: {query}\n\nRelevant videos:\n{context_text}\n\nAnswer based only on this."
|
74 |
+
}
|
75 |
+
],
|
76 |
+
response_format=LLMAnswer
|
77 |
+
)
|
78 |
+
|
79 |
+
llm_answer = response.choices[0].message.parsed # already LLMAnswer object
|
80 |
+
answer_text = llm_answer.answer_text
|
81 |
+
video_html = build_video_html(llm_answer.top_videos)
|
82 |
+
return answer_text, video_html
|
83 |
+
|
84 |
+
|
85 |
+
def build_video_html(videos: list[VideoItem]) -> str:
|
86 |
+
"""Build a clean HTML table from top_videos."""
|
87 |
+
if not videos:
|
88 |
+
return "<p>No relevant videos found.</p>"
|
89 |
+
|
90 |
+
html = """
|
91 |
+
<table border="1" style="border-collapse: collapse; width: 100%;">
|
92 |
+
<tr>
|
93 |
+
<th>Title</th>
|
94 |
+
<th>Channel</th>
|
95 |
+
<th>Description</th>
|
96 |
+
<th>Watch</th>
|
97 |
+
</tr>
|
98 |
+
"""
|
99 |
+
for v in videos:
|
100 |
+
html += f"""
|
101 |
+
<tr>
|
102 |
+
<td>{v.title}</td>
|
103 |
+
<td>{v.channel}</td>
|
104 |
+
<td>{v.description}</td>
|
105 |
+
<td><a href="https://youtube.com/watch?v={v.video_id}" target="_blank">▶️ Watch</a></td>
|
106 |
+
</tr>
|
107 |
+
"""
|
108 |
+
html += "</table>"
|
109 |
+
return html
|
modules/collector.py
CHANGED
@@ -1,69 +1,69 @@
|
|
1 |
-
# -------------------------------
|
2 |
-
# 1. Collector
|
3 |
-
# -------------------------------
|
4 |
-
from typing import List,Dict
|
5 |
-
from googleapiclient.discovery import build
|
6 |
-
|
7 |
-
from modules.youtube_utils import get_channel_id
|
8 |
-
|
9 |
-
|
10 |
-
def fetch_channel_videos_from_url(api_key: str, channel_url: str, max_results=20):
|
11 |
-
youtube = build("youtube", "v3", developerKey=api_key)
|
12 |
-
channel_id = get_channel_id(youtube, channel_url)
|
13 |
-
|
14 |
-
# Get channel details to fetch its title
|
15 |
-
channel_response = youtube.channels().list(
|
16 |
-
part="snippet",
|
17 |
-
id=channel_id
|
18 |
-
).execute()
|
19 |
-
channel_title = channel_response["items"][0]["snippet"]["title"]
|
20 |
-
|
21 |
-
request = youtube.search().list(
|
22 |
-
part="snippet",
|
23 |
-
channelId=channel_id,
|
24 |
-
maxResults=max_results,
|
25 |
-
order="date"
|
26 |
-
)
|
27 |
-
response = request.execute()
|
28 |
-
|
29 |
-
videos = []
|
30 |
-
for item in response.get("items", []):
|
31 |
-
if item["id"]["kind"] == "youtube#video":
|
32 |
-
videos.append({
|
33 |
-
"video_id": item["id"]["videoId"],
|
34 |
-
"title": item["snippet"]["title"],
|
35 |
-
"description": item["snippet"].get("description", ""),
|
36 |
-
"channel_id": channel_id,
|
37 |
-
"channel_title": channel_title,
|
38 |
-
})
|
39 |
-
return videos
|
40 |
-
|
41 |
-
def fetch_channel_videos(api_key: str, channel_id: str, max_results=20):
|
42 |
-
youtube = build("youtube", "v3", developerKey=api_key)
|
43 |
-
|
44 |
-
# Fetch channel title
|
45 |
-
channel_response = youtube.channels().list(
|
46 |
-
part="snippet",
|
47 |
-
id=channel_id
|
48 |
-
).execute()
|
49 |
-
channel_title = channel_response["items"][0]["snippet"]["title"]
|
50 |
-
|
51 |
-
request = youtube.search().list(
|
52 |
-
part="snippet",
|
53 |
-
channelId=channel_id,
|
54 |
-
maxResults=max_results,
|
55 |
-
order="date"
|
56 |
-
)
|
57 |
-
response = request.execute()
|
58 |
-
|
59 |
-
videos = []
|
60 |
-
for item in response.get("items", []):
|
61 |
-
if item["id"]["kind"] == "youtube#video":
|
62 |
-
videos.append({
|
63 |
-
"video_id": item["id"]["videoId"],
|
64 |
-
"title": item["snippet"]["title"],
|
65 |
-
"description": item["snippet"].get("description", ""),
|
66 |
-
"channel_id": channel_id,
|
67 |
-
"channel_title": channel_title,
|
68 |
-
})
|
69 |
-
return videos
|
|
|
1 |
+
# -------------------------------
|
2 |
+
# 1. Collector
|
3 |
+
# -------------------------------
|
4 |
+
from typing import List,Dict
|
5 |
+
from googleapiclient.discovery import build
|
6 |
+
|
7 |
+
from modules.youtube_utils import get_channel_id
|
8 |
+
|
9 |
+
|
10 |
+
def fetch_channel_videos_from_url(api_key: str, channel_url: str, max_results=20):
|
11 |
+
youtube = build("youtube", "v3", developerKey=api_key)
|
12 |
+
channel_id = get_channel_id(youtube, channel_url)
|
13 |
+
|
14 |
+
# Get channel details to fetch its title
|
15 |
+
channel_response = youtube.channels().list(
|
16 |
+
part="snippet",
|
17 |
+
id=channel_id
|
18 |
+
).execute()
|
19 |
+
channel_title = channel_response["items"][0]["snippet"]["title"]
|
20 |
+
|
21 |
+
request = youtube.search().list(
|
22 |
+
part="snippet",
|
23 |
+
channelId=channel_id,
|
24 |
+
maxResults=max_results,
|
25 |
+
order="date"
|
26 |
+
)
|
27 |
+
response = request.execute()
|
28 |
+
|
29 |
+
videos = []
|
30 |
+
for item in response.get("items", []):
|
31 |
+
if item["id"]["kind"] == "youtube#video":
|
32 |
+
videos.append({
|
33 |
+
"video_id": item["id"]["videoId"],
|
34 |
+
"title": item["snippet"]["title"],
|
35 |
+
"description": item["snippet"].get("description", ""),
|
36 |
+
"channel_id": channel_id,
|
37 |
+
"channel_title": channel_title,
|
38 |
+
})
|
39 |
+
return videos
|
40 |
+
|
41 |
+
def fetch_channel_videos(api_key: str, channel_id: str, max_results=20):
|
42 |
+
youtube = build("youtube", "v3", developerKey=api_key)
|
43 |
+
|
44 |
+
# Fetch channel title
|
45 |
+
channel_response = youtube.channels().list(
|
46 |
+
part="snippet",
|
47 |
+
id=channel_id
|
48 |
+
).execute()
|
49 |
+
channel_title = channel_response["items"][0]["snippet"]["title"]
|
50 |
+
|
51 |
+
request = youtube.search().list(
|
52 |
+
part="snippet",
|
53 |
+
channelId=channel_id,
|
54 |
+
maxResults=max_results,
|
55 |
+
order="date"
|
56 |
+
)
|
57 |
+
response = request.execute()
|
58 |
+
|
59 |
+
videos = []
|
60 |
+
for item in response.get("items", []):
|
61 |
+
if item["id"]["kind"] == "youtube#video":
|
62 |
+
videos.append({
|
63 |
+
"video_id": item["id"]["videoId"],
|
64 |
+
"title": item["snippet"]["title"],
|
65 |
+
"description": item["snippet"].get("description", ""),
|
66 |
+
"channel_id": channel_id,
|
67 |
+
"channel_title": channel_title,
|
68 |
+
})
|
69 |
+
return videos
|
modules/db.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
import chromadb
|
2 |
-
|
3 |
-
def get_collection():
|
4 |
-
client = chromadb.PersistentClient(path="./youtube_db")
|
5 |
-
|
6 |
-
# Ensure fresh collection with correct dimension
|
7 |
-
try:
|
8 |
-
collection = client.get_collection("yt_metadata")
|
9 |
-
except Exception:
|
10 |
-
collection = client.create_collection("yt_metadata")
|
11 |
-
|
12 |
-
# Check dimension mismatch
|
13 |
-
try:
|
14 |
-
# quick test query
|
15 |
-
collection.query(query_embeddings=[[0.0] * 1536], n_results=1)
|
16 |
-
except Exception:
|
17 |
-
# Delete and recreate with fresh schema
|
18 |
-
client.delete_collection("yt_metadata")
|
19 |
-
collection = client.create_collection("yt_metadata")
|
20 |
-
|
21 |
-
return collection
|
22 |
-
|
23 |
-
|
24 |
-
# modules/db.py
|
25 |
-
def get_indexed_channels(collection):
|
26 |
-
results = collection.get(include=["metadatas"])
|
27 |
-
channels = {}
|
28 |
-
|
29 |
-
for meta in results["metadatas"]:
|
30 |
-
cid = meta.get("channel_id") # ✅ safe
|
31 |
-
cname = meta.get("channel_title", "Unknown Channel")
|
32 |
-
|
33 |
-
if cid: # only include if we have a channel_id
|
34 |
-
channels[cid] = cname
|
35 |
-
|
36 |
-
return channels
|
|
|
1 |
+
import chromadb
|
2 |
+
|
3 |
+
def get_collection():
|
4 |
+
client = chromadb.PersistentClient(path="./youtube_db")
|
5 |
+
|
6 |
+
# Ensure fresh collection with correct dimension
|
7 |
+
try:
|
8 |
+
collection = client.get_collection("yt_metadata")
|
9 |
+
except Exception:
|
10 |
+
collection = client.create_collection("yt_metadata")
|
11 |
+
|
12 |
+
# Check dimension mismatch
|
13 |
+
try:
|
14 |
+
# quick test query
|
15 |
+
collection.query(query_embeddings=[[0.0] * 1536], n_results=1)
|
16 |
+
except Exception:
|
17 |
+
# Delete and recreate with fresh schema
|
18 |
+
client.delete_collection("yt_metadata")
|
19 |
+
collection = client.create_collection("yt_metadata")
|
20 |
+
|
21 |
+
return collection
|
22 |
+
|
23 |
+
|
24 |
+
# modules/db.py
|
25 |
+
def get_indexed_channels(collection):
|
26 |
+
results = collection.get(include=["metadatas"])
|
27 |
+
channels = {}
|
28 |
+
|
29 |
+
for meta in results["metadatas"]:
|
30 |
+
cid = meta.get("channel_id") # ✅ safe
|
31 |
+
cname = meta.get("channel_title", "Unknown Channel")
|
32 |
+
|
33 |
+
if cid: # only include if we have a channel_id
|
34 |
+
channels[cid] = cname
|
35 |
+
|
36 |
+
return channels
|
modules/indexer.py
CHANGED
@@ -1,34 +1,34 @@
|
|
1 |
-
# modules/indexer.py
|
2 |
-
from typing import Dict, List
|
3 |
-
from openai import OpenAI
|
4 |
-
|
5 |
-
def index_videos(videos: List[Dict], collection,channel_url : str):
|
6 |
-
client = OpenAI()
|
7 |
-
|
8 |
-
for vid in videos:
|
9 |
-
text = f"{vid.get('title', '')} - {vid.get('description', '')}"
|
10 |
-
embedding = client.embeddings.create(
|
11 |
-
input=text,
|
12 |
-
model="text-embedding-3-small"
|
13 |
-
).data[0].embedding
|
14 |
-
|
15 |
-
# build metadata safely
|
16 |
-
metadata = {
|
17 |
-
"video_id": vid.get("video_id"),
|
18 |
-
"video_title": vid.get("title", ""),
|
19 |
-
"description" : vid.get('description', ''),
|
20 |
-
"channel_url" : channel_url,
|
21 |
-
}
|
22 |
-
|
23 |
-
# add channel info if available
|
24 |
-
if "channel_id" in vid:
|
25 |
-
metadata["channel_id"] = vid["channel_id"]
|
26 |
-
if "channel_title" in vid:
|
27 |
-
metadata["channel_title"] = vid["channel_title"]
|
28 |
-
|
29 |
-
collection.add(
|
30 |
-
documents=[text],
|
31 |
-
embeddings=[embedding],
|
32 |
-
metadatas=[metadata],
|
33 |
-
ids=[vid.get("video_id")]
|
34 |
-
)
|
|
|
1 |
+
# modules/indexer.py
|
2 |
+
from typing import Dict, List
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
def index_videos(videos: List[Dict], collection,channel_url : str):
|
6 |
+
client = OpenAI()
|
7 |
+
|
8 |
+
for vid in videos:
|
9 |
+
text = f"{vid.get('title', '')} - {vid.get('description', '')}"
|
10 |
+
embedding = client.embeddings.create(
|
11 |
+
input=text,
|
12 |
+
model="text-embedding-3-small"
|
13 |
+
).data[0].embedding
|
14 |
+
|
15 |
+
# build metadata safely
|
16 |
+
metadata = {
|
17 |
+
"video_id": vid.get("video_id"),
|
18 |
+
"video_title": vid.get("title", ""),
|
19 |
+
"description" : vid.get('description', ''),
|
20 |
+
"channel_url" : channel_url,
|
21 |
+
}
|
22 |
+
|
23 |
+
# add channel info if available
|
24 |
+
if "channel_id" in vid:
|
25 |
+
metadata["channel_id"] = vid["channel_id"]
|
26 |
+
if "channel_title" in vid:
|
27 |
+
metadata["channel_title"] = vid["channel_title"]
|
28 |
+
|
29 |
+
collection.add(
|
30 |
+
documents=[text],
|
31 |
+
embeddings=[embedding],
|
32 |
+
metadatas=[metadata],
|
33 |
+
ids=[vid.get("video_id")]
|
34 |
+
)
|
modules/retriever.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
# modules/retriever.py
|
2 |
-
from typing import List, Dict
|
3 |
-
from openai import OpenAI
|
4 |
-
|
5 |
-
def retrieve_videos(query: str, collection, top_k: int = 3) -> List[Dict]:
|
6 |
-
client = OpenAI()
|
7 |
-
|
8 |
-
# Create embedding for query
|
9 |
-
embedding = client.embeddings.create(
|
10 |
-
input=query,
|
11 |
-
model="text-embedding-3-small"
|
12 |
-
).data[0].embedding
|
13 |
-
|
14 |
-
# Query Chroma
|
15 |
-
results = collection.query(
|
16 |
-
query_embeddings=[embedding],
|
17 |
-
n_results=top_k,
|
18 |
-
include=["metadatas", "documents", "distances"]
|
19 |
-
)
|
20 |
-
|
21 |
-
# Build list of standardized dicts
|
22 |
-
videos = []
|
23 |
-
metadatas_list = results.get("metadatas", [[]])[0] # list of metadata dicts
|
24 |
-
documents_list = results.get("documents", [[]])[0] # list of text
|
25 |
-
distances_list = results.get("distances", [[]])[0] # optional
|
26 |
-
|
27 |
-
for idx, meta in enumerate(metadatas_list):
|
28 |
-
videos.append({
|
29 |
-
"video_id": meta.get("video_id", ""),
|
30 |
-
"video_title": meta.get("video_title", meta.get("title", documents_list[idx])),
|
31 |
-
"channel": meta.get("channel", meta.get("channel_title", "")),
|
32 |
-
"description": documents_list[idx] if idx < len(documents_list) else "",
|
33 |
-
"score": distances_list[idx] if idx < len(distances_list) else None
|
34 |
-
})
|
35 |
-
|
36 |
-
return videos
|
|
|
1 |
+
# modules/retriever.py
|
2 |
+
from typing import List, Dict
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
def retrieve_videos(query: str, collection, top_k: int = 3) -> List[Dict]:
|
6 |
+
client = OpenAI()
|
7 |
+
|
8 |
+
# Create embedding for query
|
9 |
+
embedding = client.embeddings.create(
|
10 |
+
input=query,
|
11 |
+
model="text-embedding-3-small"
|
12 |
+
).data[0].embedding
|
13 |
+
|
14 |
+
# Query Chroma
|
15 |
+
results = collection.query(
|
16 |
+
query_embeddings=[embedding],
|
17 |
+
n_results=top_k,
|
18 |
+
include=["metadatas", "documents", "distances"]
|
19 |
+
)
|
20 |
+
|
21 |
+
# Build list of standardized dicts
|
22 |
+
videos = []
|
23 |
+
metadatas_list = results.get("metadatas", [[]])[0] # list of metadata dicts
|
24 |
+
documents_list = results.get("documents", [[]])[0] # list of text
|
25 |
+
distances_list = results.get("distances", [[]])[0] # optional
|
26 |
+
|
27 |
+
for idx, meta in enumerate(metadatas_list):
|
28 |
+
videos.append({
|
29 |
+
"video_id": meta.get("video_id", ""),
|
30 |
+
"video_title": meta.get("video_title", meta.get("title", documents_list[idx])),
|
31 |
+
"channel": meta.get("channel", meta.get("channel_title", "")),
|
32 |
+
"description": documents_list[idx] if idx < len(documents_list) else "",
|
33 |
+
"score": distances_list[idx] if idx < len(distances_list) else None
|
34 |
+
})
|
35 |
+
|
36 |
+
return videos
|
modules/youtube_utils.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
-
def get_channel_id(youtube, channel_url: str) -> str:
|
2 |
-
"""
|
3 |
-
Extract channel ID from a YouTube URL or handle.
|
4 |
-
Supports:
|
5 |
-
- https://www.youtube.com/channel/UCxxxx
|
6 |
-
- https://www.youtube.com/@handle
|
7 |
-
- @handle
|
8 |
-
"""
|
9 |
-
# If already a UC... ID
|
10 |
-
if "channel/" in channel_url:
|
11 |
-
return channel_url.split("channel/")[-1].split("/")[0]
|
12 |
-
|
13 |
-
# If it's a handle (@xyz or full URL)
|
14 |
-
if "@" in channel_url:
|
15 |
-
handle = channel_url.split("@")[-1]
|
16 |
-
request = youtube.channels().list(
|
17 |
-
part="id",
|
18 |
-
forHandle=handle
|
19 |
-
)
|
20 |
-
response = request.execute()
|
21 |
-
return response["items"][0]["id"]
|
22 |
-
|
23 |
-
if channel_url.startswith("UC"):
|
24 |
-
return channel_url
|
25 |
-
|
26 |
-
raise ValueError(f"Unsupported channel URL format {channel_url}")
|
|
|
1 |
+
def get_channel_id(youtube, channel_url: str) -> str:
|
2 |
+
"""
|
3 |
+
Extract channel ID from a YouTube URL or handle.
|
4 |
+
Supports:
|
5 |
+
- https://www.youtube.com/channel/UCxxxx
|
6 |
+
- https://www.youtube.com/@handle
|
7 |
+
- @handle
|
8 |
+
"""
|
9 |
+
# If already a UC... ID
|
10 |
+
if "channel/" in channel_url:
|
11 |
+
return channel_url.split("channel/")[-1].split("/")[0]
|
12 |
+
|
13 |
+
# If it's a handle (@xyz or full URL)
|
14 |
+
if "@" in channel_url:
|
15 |
+
handle = channel_url.split("@")[-1]
|
16 |
+
request = youtube.channels().list(
|
17 |
+
part="id",
|
18 |
+
forHandle=handle
|
19 |
+
)
|
20 |
+
response = request.execute()
|
21 |
+
return response["items"][0]["id"]
|
22 |
+
|
23 |
+
if channel_url.startswith("UC"):
|
24 |
+
return channel_url
|
25 |
+
|
26 |
+
raise ValueError(f"Unsupported channel URL format {channel_url}")
|
tests/search.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
from chromadb import PersistentClient
|
2 |
-
|
3 |
-
from modules.db import get_collection
|
4 |
-
from modules.retriever import retrieve_videos
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
load_dotenv()
|
7 |
-
|
8 |
-
collection = get_collection()
|
9 |
-
|
10 |
-
all_metas = collection.get(include=["metadatas"])["metadatas"]
|
11 |
-
print("Sample metadatas:", all_metas[:5])
|
12 |
-
|
13 |
-
print("-------")
|
14 |
retrieve_videos("Show me some videos that mention Ranganatha.", collection)
|
|
|
1 |
+
from chromadb import PersistentClient
|
2 |
+
|
3 |
+
from modules.db import get_collection
|
4 |
+
from modules.retriever import retrieve_videos
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
collection = get_collection()
|
9 |
+
|
10 |
+
all_metas = collection.get(include=["metadatas"])["metadatas"]
|
11 |
+
print("Sample metadatas:", all_metas[:5])
|
12 |
+
|
13 |
+
print("-------")
|
14 |
retrieve_videos("Show me some videos that mention Ranganatha.", collection)
|