Upload folder using huggingface_hub
Browse files- modules/indexer.py +44 -24
modules/indexer.py
CHANGED
@@ -2,33 +2,53 @@
|
|
2 |
from typing import Dict, List
|
3 |
from openai import OpenAI
|
4 |
|
5 |
-
def index_videos(videos: List[Dict], collection,channel_url :
|
6 |
client = OpenAI()
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
model="text-embedding-3-small"
|
13 |
-
)
|
14 |
-
|
15 |
-
|
16 |
-
metadata = {
|
17 |
-
"video_id": vid.get("video_id"),
|
18 |
-
"video_title": vid.get("title", ""),
|
19 |
-
"description" : vid.get('description', ''),
|
20 |
-
"channel_url" : channel_url,
|
21 |
-
}
|
22 |
-
|
23 |
-
# add channel info if available
|
24 |
-
if "channel_id" in vid:
|
25 |
-
metadata["channel_id"] = vid["channel_id"]
|
26 |
-
if "channel_title" in vid:
|
27 |
-
metadata["channel_title"] = vid["channel_title"]
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
collection.add(
|
30 |
-
documents=
|
31 |
-
embeddings=
|
32 |
-
metadatas=
|
33 |
-
ids=
|
34 |
)
|
|
|
|
|
|
|
|
|
|
2 |
from typing import Dict, List
|
3 |
from openai import OpenAI
|
4 |
|
5 |
+
def index_videos(videos: List[Dict], collection, channel_url: str, batch_size: int = 20):
|
6 |
client = OpenAI()
|
7 |
|
8 |
+
total = len(videos)
|
9 |
+
print(f"[INDEX] Starting indexing for {total} videos (channel={channel_url})")
|
10 |
+
|
11 |
+
# Split into batches
|
12 |
+
for start in range(0, total, batch_size):
|
13 |
+
batch = videos[start:start + batch_size]
|
14 |
+
print(f"[INDEX] Processing batch {start+1} → {start+len(batch)} of {total}")
|
15 |
+
|
16 |
+
# Prepare text inputs
|
17 |
+
texts = [f"{vid.get('title', '')} - {vid.get('description', '')}" for vid in batch]
|
18 |
+
|
19 |
+
# Call embeddings API in batch
|
20 |
+
response = client.embeddings.create(
|
21 |
+
input=texts,
|
22 |
model="text-embedding-3-small"
|
23 |
+
)
|
24 |
+
|
25 |
+
embeddings = [item.embedding for item in response.data]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Build metadata + ids
|
28 |
+
metadatas, ids = [], []
|
29 |
+
for vid in batch:
|
30 |
+
metadata = {
|
31 |
+
"video_id": vid.get("video_id"),
|
32 |
+
"video_title": vid.get("title", ""),
|
33 |
+
"description": vid.get("description", ""),
|
34 |
+
"channel_url": channel_url,
|
35 |
+
}
|
36 |
+
if "channel_id" in vid:
|
37 |
+
metadata["channel_id"] = vid["channel_id"]
|
38 |
+
if "channel_title" in vid:
|
39 |
+
metadata["channel_title"] = vid["channel_title"]
|
40 |
+
|
41 |
+
metadatas.append(metadata)
|
42 |
+
ids.append(vid.get("video_id"))
|
43 |
+
|
44 |
+
# Insert in bulk
|
45 |
collection.add(
|
46 |
+
documents=texts,
|
47 |
+
embeddings=embeddings,
|
48 |
+
metadatas=metadatas,
|
49 |
+
ids=ids,
|
50 |
)
|
51 |
+
|
52 |
+
print(f"[INDEX] ✅ Indexed {len(batch)} videos (total so far: {start+len(batch)}/{total})")
|
53 |
+
|
54 |
+
print(f"[INDEX] 🎉 Finished indexing {total} videos for channel={channel_url}")
|