import streamlit as st import cv2 import numpy as np from PIL import Image, ImageDraw from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel import torch # Load Models detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") # Streamlit App Configuration st.title("Real-Time Car Number Plate Recognition") st.write("This app uses Hugging Face Transformers, OpenCV, and Streamlit for detecting and recognizing car number plates in real-time.") # Authorized Car Database authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification # Detect License Plates def detect_license_plate(frame): pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) inputs = detr_processor(images=pil_image, return_tensors="pt") outputs = detr_model(**inputs) # Post-process outputs to get bounding boxes target_sizes = torch.tensor([pil_image.size[::-1]]) results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9) return results[0]["boxes"], pil_image # Recognize Text from Plates def recognize_text_from_plate(cropped_plate): inputs = trocr_processor(images=cropped_plate, return_tensors="pt") outputs = trocr_model.generate(**inputs) return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0] # Verify Plate Text def verify_plate(plate_text): if plate_text in authorized_cars: return f"✅ Access Granted: {plate_text}" else: return f"❌ Access Denied: {plate_text}" # Real-Time Video Processing with OpenCV def live_feed(): cap = cv2.VideoCapture(0) # Open webcam if not cap.isOpened(): st.error("Unable to access the camera.") return stframe = st.image([]) # Placeholder for video feed while True: ret, frame = cap.read() if not ret: st.error("Failed to capture frame from the camera. Exiting...") break # Detect plates boxes, pil_image = detect_license_plate(frame) draw = ImageDraw.Draw(pil_image) recognized_plates = [] for box in boxes: # Crop and recognize plate cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3])) plate_text = recognize_text_from_plate(cropped_plate) recognized_plates.append(plate_text) # Draw box and label draw.rectangle(box.tolist(), outline="red", width=3) draw.text((box[0], box[1]), plate_text, fill="red") # Convert back to OpenCV format processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) # Stream video to Streamlit stframe.image(processed_frame, channels="BGR", use_column_width=True) # Display results for plate_text in recognized_plates: st.write(verify_plate(plate_text)) cap.release() cv2.destroyAllWindows() # Streamlit UI if st.button("Start Camera"): live_feed()