Spaces:
Running
Running
import streamlit as st | |
from streamlit_webrtc import webrtc_streamer, VideoProcessorBase | |
import av | |
from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import torch | |
# Step 1: Load Models | |
# DETR for object detection | |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
# TrOCR for text recognition | |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") | |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") | |
# Authorized car database for verification | |
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090", "CH01AG2863"} # Example data | |
# Step 2: Define Helper Functions | |
def detect_license_plate(frame): | |
""" | |
Detect license plates in the frame using DETR. | |
""" | |
pil_image = Image.fromarray(frame) | |
inputs = detr_processor(images=pil_image, return_tensors="pt") | |
outputs = detr_model(**inputs) | |
# Get bounding boxes | |
target_sizes = torch.tensor([pil_image.size[::-1]]) | |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9) | |
return results[0]["boxes"], pil_image | |
def recognize_text_from_plate(cropped_plate): | |
""" | |
Recognize text from the cropped license plate image using TrOCR. | |
""" | |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt") | |
outputs = trocr_model.generate(**inputs) | |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
def verify_plate(plate_text): | |
""" | |
Check if the recognized plate text exists in the authorized cars database. | |
""" | |
if plate_text in authorized_cars: | |
return f"β Access Granted: {plate_text}" | |
else: | |
return f"β Access Denied: {plate_text}" | |
# Step 3: Custom Video Processor for WebRTC | |
class LicensePlateProcessor(VideoProcessorBase): | |
""" | |
Custom video processor to handle video frames in real-time. | |
""" | |
def recv(self, frame: av.VideoFrame): | |
frame = frame.to_ndarray(format="bgr24") # Convert frame to NumPy array | |
boxes, pil_image = detect_license_plate(frame) | |
draw = ImageDraw.Draw(pil_image) | |
recognized_plates = [] | |
for box in boxes: | |
# Crop detected license plate | |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3])) | |
plate_text = recognize_text_from_plate(cropped_plate) | |
recognized_plates.append(plate_text) | |
# Draw bounding box and label on the image | |
draw.rectangle(box.tolist(), outline="red", width=3) | |
draw.text((box[0], box[1]), plate_text, fill="red") | |
# Convert back to OpenCV format | |
processed_frame = np.array(pil_image) | |
# Log results in Streamlit UI | |
for plate_text in recognized_plates: | |
st.write(verify_plate(plate_text)) | |
return av.VideoFrame.from_ndarray(processed_frame, format="bgr24") | |
# Step 4: Streamlit Interface | |
st.title("Real-Time Car Number Plate Recognition") | |
st.write("This app uses Hugging Face Transformers and WebRTC for real-time processing.") | |
# Start WebRTC Streamer | |
webrtc_streamer( | |
key="plate-recognition", | |
video_processor_factory=LicensePlateProcessor, | |
rtc_configuration={ | |
# Required to ensure WebRTC works across networks | |
"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}] | |
} | |
) | |