Spaces:
Running
Running
File size: 6,368 Bytes
396dfd7 f7b89d2 3c64e23 f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 3c64e23 396dfd7 f7b89d2 4c1e130 3c64e23 f7b89d2 4c1e130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler
METRICS = ["ndcg_at_5", "recall_at_1"]
def main():
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
data = model_handler.get_vidore_data(initial_metric)
data = add_rank_and_format(data)
NUM_DATASETS = len(data.columns) - 3
NUM_SCORES = len(data) * NUM_DATASETS
NUM_MODELS = len(data)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("π Leaderboard"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark ππ")
gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models π")
gr.Markdown(
"""
Visual Document Retrieval Benchmark leaderboard. To submit, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
"""
)
datasets_columns = list(data.columns[3:])
anchor_columns = list(data.columns[:3])
default_columns = anchor_columns + datasets_columns
with gr.Row():
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox = gr.Textbox(placeholder="π Search Models... [press enter]", label="Filter Models by Name", )
column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
def update_data(metric, search_term, selected_columns):
data = model_handler.get_vidore_data(metric)
data = add_rank_and_format(data)
data = filter_models(data, search_term)
if selected_columns:
selected_columns = selected_columns
data = data[selected_columns]
return data
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
research_textbox.submit(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
column_checkboxes.change(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
"""
+ r"""
Please consider citing:
```bibtex
INSERT LATER
```
"""
)
with gr.TabItem("π Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- You can either follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/tonywu71/vidore-benchmark/)
- Use your own evaluation script.
2. **Format your submission file**:
- The submission file should be named `results.json`, and therefore in JSON format.
- It should have the following structure:
```json
{
"dataset_name_1": {
"metric_1": score_1,
"metric_2": score_2,
...
},
"dataset_name_2": {
"metric_1": score_1,
"metric_2": score_2,
...
},
}
```
- The dataset names should be the same as viDoRe dataset names listed in the following collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
3. **Submit your model**:
- Create a huggingface model repository with your model and the submission file.
- Add the tag 'vidore' to your model.
And you're done ! Your model will appear on the leaderboard once it is approved by the ViDoRe team.
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()
|