File size: 6,368 Bytes
396dfd7
f7b89d2
3c64e23
 
 
 
f7b89d2
4c1e130
 
 
 
 
 
f7b89d2
4c1e130
 
 
f7b89d2
4c1e130
 
 
 
f7b89d2
4c1e130
 
 
 
 
 
 
f7b89d2
4c1e130
 
 
3c64e23
 
 
 
 
396dfd7
f7b89d2
4c1e130
3c64e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b89d2
 
4c1e130
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr

from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler

METRICS = ["ndcg_at_5", "recall_at_1"]

def main(): 
    model_handler = ModelHandler()
    initial_metric = "ndcg_at_5"
    
    data = model_handler.get_vidore_data(initial_metric)
    data = add_rank_and_format(data)

    NUM_DATASETS = len(data.columns) - 3
    NUM_SCORES = len(data) * NUM_DATASETS
    NUM_MODELS = len(data)

    css = """
    table > thead {
        white-space: normal
    }

    table {
        --cell-width-1: 250px
    }

    table > tbody > tr > td:nth-child(2) > div {
        overflow-x: auto
    }

    .filter-checkbox-group {
        max-width: max-content;
    }

    #markdown size
    .markdown {
        font-size: 1rem;
    }
    """

    with gr.Blocks(css=css) as block:
        with gr.Tabs():
            with gr.TabItem("πŸ† Leaderboard"):
                gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark πŸ“šπŸ”")
                gr.Markdown("## From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark leaderboard. To submit, refer to the corresponding tab.  
                
                Refer to the [ColPali paper](https://arxiv.org/abs/XXXX.XXXXX) for details on metrics, tasks and models.
                """
                )
                datasets_columns = list(data.columns[3:])
                anchor_columns = list(data.columns[:3])
                default_columns = anchor_columns + datasets_columns

                with gr.Row():
                    metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    research_textbox = gr.Textbox(placeholder="πŸ” Search Models... [press enter]", label="Filter Models by Name", )
                    column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")

                with gr.Row():
                    datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
                    dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")

                def update_data(metric, search_term, selected_columns):
                    data = model_handler.get_vidore_data(metric)
                    data = add_rank_and_format(data)
                    data = filter_models(data, search_term)
                    if selected_columns:
                        selected_columns = selected_columns
                        data = data[selected_columns]
                    return data

                with gr.Row():
                    refresh_button = gr.Button("Refresh")
                    refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)


                # Automatically refresh the dataframe when the dropdown value changes
                metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
                research_textbox.submit(
                    lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns), 
                    inputs=[metric_dropdown, research_textbox, column_checkboxes], 
                    outputs=dataframe
                )
                column_checkboxes.change(
                    lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns), 
                    inputs=[metric_dropdown, research_textbox, column_checkboxes], 
                    outputs=dataframe
                )

                #column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)


                gr.Markdown(
                    f"""
                - **Total Datasets**: {NUM_DATASETS}
                - **Total Scores**: {NUM_SCORES}
                - **Total Models**: {NUM_MODELS}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                INSERT LATER
                ```
                """
                )
            with gr.TabItem("πŸ“š Submit your model"):
                gr.Markdown("# How to Submit a New Model to the Leaderboard")
                gr.Markdown(
                    """
                    To submit a new model to the ViDoRe leaderboard, follow these steps:

                    1. **Evaluate your model**:
                       - You can either follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/tonywu71/vidore-benchmark/)
                       - Use your own evaluation script.
                    
                    2. **Format your submission file**:
                        - The submission file should be named `results.json`, and therefore in JSON format.
                        - It should have the following structure:
                        ```json
                        {
                            "dataset_name_1": {
                                "metric_1": score_1,
                                "metric_2": score_2,
                                ...
                            },
                            "dataset_name_2": {
                                "metric_1": score_1,
                                "metric_2": score_2,
                                ...
                            },
                        }
                        ```
                        - The dataset names should be the same as viDoRe dataset names listed in the following collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
                    
                    3. **Submit your model**:
                        - Create a huggingface model repository with your model and the submission file.
                        - Add the tag 'vidore' to your model.
                    
                    And you're done ! Your model will appear on the leaderboard once it is approved by the ViDoRe team.
                    """
                )

    block.queue(max_size=10).launch(debug=True)


if __name__ == "__main__":    
    main()