import streamlit as st #from transformers import pipeline #pipe = pipeline('sentiment-analysis') #text = st.text_area('enter some text!') #if text: # out = pipe(text) #st.json(out) from transformers import pipeline model_name = "deepset/xlm-roberta-large-squad2" qa_pl = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0) #predictions = [] # batches might be faster ctx = st.text_area('Gib context') q = st.text_area('Gib question') if context: result = qa_pl(context=ctx, question=q) st.json(result["answer"]) #for ctx, q in test_df[["context", "question"]].to_numpy(): # result = qa_pl(context=ctx, question=q) # predictions.append(result["answer"]) #model = AutoModelForQuestionAnswering.from_pretrained(model_name) #tokenizer = AutoTokenizer.from_pretrained(model_name)