Spaces:
Runtime error
Runtime error
import streamlit as st | |
#from transformers import pipeline | |
#pipe = pipeline('sentiment-analysis') | |
#text = st.text_area('enter some text!') | |
#if text: | |
# out = pipe(text) | |
#st.json(out) | |
from transformers import pipeline | |
model_name = "deepset/xlm-roberta-large-squad2" | |
qa_pl = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0) | |
#predictions = [] | |
# batches might be faster | |
ctx = st.text_area('Gib context') | |
q = st.text_area('Gib question') | |
if context: | |
result = qa_pl(context=ctx, question=q) | |
st.json(result["answer"]) | |
#for ctx, q in test_df[["context", "question"]].to_numpy(): | |
# result = qa_pl(context=ctx, question=q) | |
# predictions.append(result["answer"]) | |
#model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
#tokenizer = AutoTokenizer.from_pretrained(model_name) |