Spaces:
Running
on
Zero
Running
on
Zero
| from pathlib import Path | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from PIL import Image | |
| from pillow_heif import register_heif_opener | |
| from refiners.fluxion.utils import manual_seed | |
| from refiners.foundationals.latent_diffusion import Solver, solvers | |
| from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints | |
| register_heif_opener() | |
| TITLE = """ | |
| <center> | |
| <h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;"> | |
| Image Enhancer Powered By Refiners | |
| </h1> | |
| <div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem; margin-bottom: 0.5rem; font-size: 1.25rem; flex-wrap: wrap;"> | |
| <a href="https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/" target="_blank">[Blog Post]</a> | |
| <a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a> | |
| <a href="https://finegrain.ai/" target="_blank">[Finegrain]</a> | |
| <a href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" target="_blank">[Finegrain Object Eraser]</a> | |
| </div> | |
| <p> | |
| Turn low resolution images into high resolution versions with added generated details (your image will be modified). | |
| </p> | |
| <p> | |
| This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation. | |
| If you enjoyed it, please consider starring Refiners on GitHub! | |
| </p> | |
| <a href="https://github.com/finegrain-ai/refiners" target="_blank"> | |
| <img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" /> | |
| </a> | |
| </center> | |
| """ | |
| CHECKPOINTS = ESRGANUpscalerCheckpoints( | |
| unet=Path( | |
| hf_hub_download( | |
| repo_id="refiners/juggernaut.reborn.sd1_5.unet", | |
| filename="model.safetensors", | |
| revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2", | |
| ) | |
| ), | |
| clip_text_encoder=Path( | |
| hf_hub_download( | |
| repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder", | |
| filename="model.safetensors", | |
| revision="744ad6a5c0437ec02ad826df9f6ede102bb27481", | |
| ) | |
| ), | |
| lda=Path( | |
| hf_hub_download( | |
| repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder", | |
| filename="model.safetensors", | |
| revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19", | |
| ) | |
| ), | |
| controlnet_tile=Path( | |
| hf_hub_download( | |
| repo_id="refiners/controlnet.sd1_5.tile", | |
| filename="model.safetensors", | |
| revision="48ced6ff8bfa873a8976fa467c3629a240643387", | |
| ) | |
| ), | |
| esrgan=Path( | |
| hf_hub_download( | |
| repo_id="philz1337x/upscaler", | |
| filename="4x-UltraSharp.pth", | |
| revision="011deacac8270114eb7d2eeff4fe6fa9a837be70", | |
| ) | |
| ), | |
| negative_embedding=Path( | |
| hf_hub_download( | |
| repo_id="philz1337x/embeddings", | |
| filename="JuggernautNegative-neg.pt", | |
| revision="203caa7e9cc2bc225031a4021f6ab1ded283454a", | |
| ) | |
| ), | |
| negative_embedding_key="string_to_param.*", | |
| loras={ | |
| "more_details": Path( | |
| hf_hub_download( | |
| repo_id="philz1337x/loras", | |
| filename="more_details.safetensors", | |
| revision="a3802c0280c0d00c2ab18d37454a8744c44e474e", | |
| ) | |
| ), | |
| "sdxl_render": Path( | |
| hf_hub_download( | |
| repo_id="philz1337x/loras", | |
| filename="SDXLrender_v2.0.safetensors", | |
| revision="a3802c0280c0d00c2ab18d37454a8744c44e474e", | |
| ) | |
| ), | |
| }, | |
| ) | |
| LORA_SCALES = { | |
| "more_details": 0.5, | |
| "sdxl_render": 1.0, | |
| } | |
| # initialize the enhancer, on the cpu | |
| DEVICE_CPU = torch.device("cpu") | |
| DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 | |
| enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE) | |
| # "move" the enhancer to the gpu, this is handled by Zero GPU | |
| DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| enhancer.to(device=DEVICE, dtype=DTYPE) | |
| def process( | |
| input_image: Image.Image, | |
| prompt: str = "masterpiece, best quality, highres", | |
| negative_prompt: str = "worst quality, low quality, normal quality", | |
| seed: int = 42, | |
| upscale_factor: int = 2, | |
| controlnet_scale: float = 0.6, | |
| controlnet_decay: float = 1.0, | |
| condition_scale: int = 6, | |
| tile_width: int = 112, | |
| tile_height: int = 144, | |
| denoise_strength: float = 0.35, | |
| num_inference_steps: int = 18, | |
| solver: str = "DDIM", | |
| ) -> tuple[Image.Image, Image.Image]: | |
| manual_seed(seed) | |
| solver_type: type[Solver] = getattr(solvers, solver) | |
| enhanced_image = enhancer.upscale( | |
| image=input_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| upscale_factor=upscale_factor, | |
| controlnet_scale=controlnet_scale, | |
| controlnet_scale_decay=controlnet_decay, | |
| condition_scale=condition_scale, | |
| tile_size=(tile_height, tile_width), | |
| denoise_strength=denoise_strength, | |
| num_inference_steps=num_inference_steps, | |
| loras_scale=LORA_SCALES, | |
| solver_type=solver_type, | |
| ) | |
| return (input_image, enhanced_image) | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="Input Image") | |
| run_button = gr.ClearButton(components=None, value="Enhance Image") | |
| with gr.Column(): | |
| output_slider = ImageSlider(label="Before / After") | |
| run_button.add(output_slider) | |
| with gr.Accordion("Advanced Options", open=False): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="masterpiece, best quality, highres", | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="worst quality, low quality, normal quality", | |
| ) | |
| seed = gr.Slider( | |
| minimum=0, | |
| maximum=10_000, | |
| value=42, | |
| step=1, | |
| label="Seed", | |
| ) | |
| upscale_factor = gr.Slider( | |
| minimum=1, | |
| maximum=4, | |
| value=2, | |
| step=0.2, | |
| label="Upscale Factor", | |
| ) | |
| controlnet_scale = gr.Slider( | |
| minimum=0, | |
| maximum=1.5, | |
| value=0.6, | |
| step=0.1, | |
| label="ControlNet Scale", | |
| ) | |
| controlnet_decay = gr.Slider( | |
| minimum=0.5, | |
| maximum=1, | |
| value=1.0, | |
| step=0.025, | |
| label="ControlNet Scale Decay", | |
| ) | |
| condition_scale = gr.Slider( | |
| minimum=2, | |
| maximum=20, | |
| value=6, | |
| step=1, | |
| label="Condition Scale", | |
| ) | |
| tile_width = gr.Slider( | |
| minimum=64, | |
| maximum=200, | |
| value=112, | |
| step=1, | |
| label="Latent Tile Width", | |
| ) | |
| tile_height = gr.Slider( | |
| minimum=64, | |
| maximum=200, | |
| value=144, | |
| step=1, | |
| label="Latent Tile Height", | |
| ) | |
| denoise_strength = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=0.35, | |
| step=0.1, | |
| label="Denoise Strength", | |
| ) | |
| num_inference_steps = gr.Slider( | |
| minimum=1, | |
| maximum=30, | |
| value=18, | |
| step=1, | |
| label="Number of Inference Steps", | |
| ) | |
| solver = gr.Radio( | |
| choices=["DDIM", "DPMSolver"], | |
| value="DDIM", | |
| label="Solver", | |
| ) | |
| run_button.click( | |
| fn=process, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| upscale_factor, | |
| controlnet_scale, | |
| controlnet_decay, | |
| condition_scale, | |
| tile_width, | |
| tile_height, | |
| denoise_strength, | |
| num_inference_steps, | |
| solver, | |
| ], | |
| outputs=output_slider, | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| "examples/kara-eads-L7EwHkq1B2s-unsplash.jpg", | |
| "examples/clarity_bird.webp", | |
| "examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg", | |
| "examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg", | |
| "examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg", | |
| "examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg", | |
| "examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg", | |
| "examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg", | |
| "examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg", | |
| ], | |
| inputs=[input_image], | |
| outputs=output_slider, | |
| fn=process, | |
| cache_examples="lazy", | |
| run_on_click=False, | |
| ) | |
| demo.launch(share=False) | |